A Tensor-Based Method for Geosensor Data Forecasting

  • Lihua Zhou
  • Guowang Du
  • Qing XiaoEmail author
  • Lizhen Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10988)


In recent years, geosensor data forecasting has received considerable attention. However, the presence of correlation (i.e. spatial correlation across several sites and time correlation within each site) poses difficulties to accurate forecasting. In this paper, a tensor-based method for geosensor data forecasting is proposed. Specifically, a tensor pattern is first introduced into modelling the geosensor data, which can take advantage of geosensor spatial-temporal information and preserve the multi-way nature of geosensor data, and then a tensor decomposition based algorithm is developed to forecast future values of time series. The proposed approach not only combines and utilizes the multi-mode correlations, but also well extracts the underlying factors in each mode of tensor and mines the multi-dimensional structures of geosensor data. Experimental evaluations on real world geosensor data validate the effectiveness of the proposed methods.


Geosensor data forecasting Tensor decomposition CP-WOPT model 



This research was supported by the National Natural Science Foundation of China (61762090, 61262069, 61472346, and 61662086), The Natural Science Foundation of Yunnan Province (2016FA026, 2015FB114), the Project of Innovative Research Team of Yunnan Province, and Program for Innovation Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN).


  1. 1.
    Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio temporally correlated time series using Markov models. PVLDB 6(9), 769–780 (2013)Google Scholar
  2. 2.
    Yu, R., Cheng, D., Liu, Y.: Accelerated online low rank tensor learning for multivariate spatiotemporal streams. ICML 2015, 238–247 (2015)Google Scholar
  3. 3.
    Sun, Y., Yuan, N.J., Wang, Y., et al.: Collaborative intent prediction with real-time contextual data. ACM Trans. Inf. Syst. 35(4), 30 (2017)CrossRefGoogle Scholar
  4. 4.
    Pravilovic, S., Appice, A., Malerba, D.: An intelligent technique for forecasting spatially correlated time series. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 457–468. Springer, Cham (2013). Scholar
  5. 5.
    Pravilovic, S., Appice, A., Malerba, D.: Integrating cluster analysis to the ARIMA model for forecasting geosensor data. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Zbigniew W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 234–243. Springer, Cham (2014). Scholar
  6. 6.
    Pravilovic, S., Bilancia, M., Appice, A., Malerba, D.: Using multiple time series analysis for geosensor data forecasting. Inf. Sci. 380(2017), 31–52 (2017)CrossRefGoogle Scholar
  7. 7.
    Acar, E., Dunlavy, D.M., Kolda, T.G.: Mϕrup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)CrossRefGoogle Scholar
  8. 8.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tan, H.C., Feng, G.D., Feng, J.S., Wang, W.H., Zhang, Y.J.: A tensor-based method for missing traffic data completion. Transp. Res. Part C 28, 15–27 (2013)CrossRefGoogle Scholar
  10. 10.
    Egrioglu, E., Yolcu, U., Aladag, C., Bas, E.: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Procedia – Soc. Behav. Sci. 109(8), 1094–1100 (2014)CrossRefGoogle Scholar
  11. 11.
    Pokrajac, D., Obradovic, Z.: Improved spatial-temporal forecasting through modelling of spatial residuals in recent history. In: SDM, Chicago, IL, USA, 5–7 April 2001, pp. 1–17 (2001)Google Scholar
  12. 12.
    Kamarianakis, Y., Prastacos, P.: Space–time modeling of traffic flow. Comput. Geosci. 31(2), 119–133 (2005)CrossRefGoogle Scholar
  13. 13.
    Ohashi, O., Torgo, L.: Wind speed forecasting using spatio-temporal indicators. In: ECAI, France, 27–31 August 2012, pp. 975–980 (2012)Google Scholar
  14. 14.
    Asteriou D., Hall S.: ARIMA models and the box-jenkins methodology. In: Applied Econometrics, 2nd edn., pp. 265–286. Palgrave MacMillan (2011)Google Scholar
  15. 15.
    Saengseedam, P., Kantanantha, N.: Spatio-temporal model for crop yield forecasting. J. Appl. Stat. 44(3), 427–440 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Harris, C.W. (ed.) Problems in Measuring Change, pp. 122–137. University of Wisconsin Press (1963)Google Scholar
  17. 17.
    Kiers, H.A.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14(3), 105–122 (2000)CrossRefGoogle Scholar
  18. 18.
    Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lihua Zhou
    • 1
  • Guowang Du
    • 1
  • Qing Xiao
    • 1
    Email author
  • Lizhen Wang
    • 1
  1. 1.School of InformationYunnan UniversityKunmingChina

Personalised recommendations