Advertisement

Verifiable Delay Functions

  • Dan Boneh
  • Joseph Bonneau
  • Benedikt Bünz
  • Ben Fisch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10991)

Abstract

We study the problem of building a verifiable delay function (VDF). A \(\text {VDF}\)requires a specified number of sequential steps to evaluate, yet produces a unique output that can be efficiently and publicly verified. \(\text {VDF}\)s have many applications in decentralized systems, including public randomness beacons, leader election in consensus protocols, and proofs of replication. We formalize the requirements for \(\text {VDF}\)s and present new candidate constructions that are the first to achieve an exponential gap between evaluation and verification time.

Notes

Acknowledgments

We thank Micheal Zieve for his help with permutation polynomials. We thank the CRYPTO reviewers for their helpful comments. This work was supported by NSF, a grant from ONR, the Simons Foundation, and a Google faculty fellowship.

References

  1. 1.
    RANDAO: A DAO working as RNG of Ethereum. Technical report (2016)Google Scholar
  2. 2.
    Filecoin: A decentralized storage network. Protocol Labs (2017). https://filecoin.io/filecoin.pdf
  3. 3.
    Proof of replication. Protocol Labs (2017). https://filecoin.io/proof-of-replication.pdf
  4. 4.
  5. 5.
    Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_7CrossRefGoogle Scholar
  6. 6.
    Armknecht, F., Barman, L., Bohli, J.-M., Karame, G.O.: Mirror: enabling proofs of data replication and retrievability in the cloud. In: USENIX Security Symposium, pp. 1051–1068 (2016)Google Scholar
  7. 7.
    Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles. In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44810-1_22CrossRefGoogle Scholar
  8. 8.
    Baktir, S., Savas, E.: Highly-parallel montgomery multiplication for multi-core general-purpose microprocessors. In: Gelenbe, E., Lent, R. (eds.) Computer and Information Sciences III, pp. 467–476. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4594-3_48CrossRefGoogle Scholar
  9. 9.
    Ben-Sasson, E., et al. Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE Symposium on Security and Privacy (2014)Google Scholar
  10. 10.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_6CrossRefMATHGoogle Scholar
  11. 11.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. Algorithmica 79, 1102–1160 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv preprint arXiv:1605.04559 (2016)
  13. 13.
    Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptology ePrint Archive, 2016 (2016)Google Scholar
  14. 14.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs and proof-carrying data. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 111–120. ACM (2013)Google Scholar
  15. 15.
    Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: ACM Conference on Innovations in Theoretical Computer Science (2016)Google Scholar
  16. 16.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_15CrossRefGoogle Scholar
  17. 17.
    Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source (2015). https://eprint.iacr.org/2015/1015.pdf
  18. 18.
    Bonneau, J., Xu, R.: Scrambling for lightweight censorship resistance. In: Christianson, B., Crispo, B., Malcolm, J., Stajano, F. (eds.) Security Protocols 2011. LNCS, vol. 7114, pp. 296–302. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25867-1_28CrossRefGoogle Scholar
  19. 19.
    Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_15CrossRefGoogle Scholar
  20. 20.
    Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptol. 1(2), 107–118 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cai, J., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable benchmarks. In: Structure in Complexity Theory (1993)Google Scholar
  22. 22.
    Cai, J.-Y., Nerurkar, A., Wu, M.-Y.: The design of uncheatable benchmarks using complexity theory (1997)Google Scholar
  23. 23.
    Cascudo, I., David, B.: Scrape: scalable randomness attested by public entities. Cryptology ePrint Archive, Report 2017/216 (2017). http://eprint.iacr.org/2017/216
  24. 24.
    Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In: Usenix EVT/WOTE (2010)Google Scholar
  25. 25.
    Codenottia, B., Datta, B.N., Datta, K., Leoncini, M.: Parallel algorithms for certain matrix computations. Theor. Comput. Sci. 180, 287–308 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Cohen, B.: Proofs of space and time. In: Blockchain Protocol Analysis and Security Engineering (2017). https://cyber.stanford.edu/sites/default/files/bramcohen.pdf
  27. 27.
    Dai, W.: B-money. Consulted 1, 2012 (1998)Google Scholar
  28. 28.
    David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_3CrossRefGoogle Scholar
  29. 29.
    Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Security Symposium, vol. 42 (2001)Google Scholar
  30. 30.
    Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45748-8_24CrossRefGoogle Scholar
  31. 31.
    Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_10CrossRefGoogle Scholar
  32. 32.
    Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_29CrossRefGoogle Scholar
  33. 33.
    Mathieu, É.: Mémoire sur l’étude des fonctions de plusieurs quantités sur la manière de les former et sur les substitutions qui les laissent invariables. J. Math. Pures Appl. 6(2), 241–323 (1861)MathSciNetGoogle Scholar
  34. 34.
    Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and applications. Cryptology ePrint Archive # 2014/765 (2014)Google Scholar
  35. 35.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  36. 36.
    Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotteries: applications of delaying functions. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 214–226. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055485CrossRefGoogle Scholar
  37. 37.
    Guralnick, R.M., Müller, P.: Exceptional polynomials of affine type. J. Algebra 194(2), 429–454 (1997)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hou, X.-d.: Permutation polynomials over finite fieldsa survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)Google Scholar
  39. 39.
    Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles from modular square roots. In: Availability, Reliability and Security (ARES) (2011)Google Scholar
  40. 40.
    Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative memory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_1CrossRefGoogle Scholar
  41. 41.
    Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 584–597. ACM (2007)Google Scholar
  42. 42.
    Jules, A., Brainard, J.: Client-puzzles: a cryptographic defense against connection depletion. In: Proceedings of Network and Distributed System Security Symposium (NDSS 1999), pp. 151–165 (1999)Google Scholar
  43. 43.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_12CrossRefGoogle Scholar
  44. 44.
    King, S., Nadal, S.: Peercoin–secure & sustainable cryptocoin, August 2012. https://peercoin.net/whitepaper
  45. 45.
    Kogan, D., Manohar, N., Boneh, D.: T/key: second-factor authentication from secure hash chains. In: ACM Conference on Computer and Communications Security (2017)Google Scholar
  46. 46.
    Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. IACR Cryptology ePrint Archive, 2015 (2015)Google Scholar
  47. 47.
    Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials, vol. 65. Chapman & Hall/CRC, Boca Raton (1993)MATHGoogle Scholar
  48. 48.
    Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31284-7_14CrossRefGoogle Scholar
  49. 49.
    Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential work. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science. ACM (2013)Google Scholar
  50. 50.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_2CrossRefGoogle Scholar
  51. 51.
    Micali, S.: CS proofs. In: 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 436–453. IEEE (1994)Google Scholar
  52. 52.
    Micali, S.: Algorand: the efficient and democratic ledger. arXiv preprint arXiv:1607.01341 (2016)
  53. 53.
    Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin work for data preservation. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 475–490. IEEE (2014)Google Scholar
  54. 54.
    Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_1CrossRefGoogle Scholar
  55. 55.
    Morris, R., Thompson, K.: Password security: a case history. Commun. ACM 22(11), 594–597 (1979)CrossRefGoogle Scholar
  56. 56.
    Müller, P.: A weil-bound free proof of Schur’s conjecture. Finite Fields Appl. 3(1), 25–32 (1997)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  58. 58.
    Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gai, P.: SpaceMint: a cryptocurrency based on proofs of space. Cryptology ePrint Archive, Report 2015/528 (2015). http://eprint.iacr.org/2015/528
  59. 59.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: IEEE Security and Privacy (2013)Google Scholar
  60. 60.
    Pierrot, C., Wesolowski, B.: Malleability of the blockchains entropy. Cryptogr. Commun. 10, 211–233 (2016)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Pietrzak, K.: Unique proofs of sequential work from time-lock puzzles (2018). ManuscriptGoogle Scholar
  62. 62.
    Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27, 256–267 (1983)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropayment schemes. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62494-5_6CrossRefGoogle Scholar
  64. 64.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)Google Scholar
  65. 65.
    Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 444–460. IEEE (2017)Google Scholar
  66. 66.
    Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_1CrossRefMATHGoogle Scholar
  67. 67.
    Van Oorschot,P.C., Wiener, M.J.: Parallel collision search with application to hash functions and discrete logarithms. In: ACM Conference on Computer and Communications Security (1994)Google Scholar
  68. 68.
    Wahby, R.S., Setty, S.T., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and control flow in verifiable outsourced computation. In: NDSS (2015)Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Dan Boneh
    • 1
  • Joseph Bonneau
    • 2
  • Benedikt Bünz
    • 1
  • Ben Fisch
    • 1
  1. 1.Stanford UniversityStanfordUSA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations