Advertisement

Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly

  • Qingju Wang
  • Yonglin Hao
  • Yosuke Todo
  • Chaoyun Li
  • Takanori Isobe
  • Willi Meier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10991)

Abstract

The cube attack is an important technique for the cryptanalysis of symmetric key primitives, especially for stream ciphers. Aiming at recovering some secret key bits, the adversary reconstructs a superpoly with the secret key bits involved, by summing over a set of the plaintexts/IV which is called a cube. Traditional cube attack only exploits linear/quadratic superpolies. Moreover, for a long time after its proposal, the size of the cubes has been largely confined to an experimental range, e.g., typically 40. These limits were first overcome by the division property based cube attacks proposed by Todo et al. at CRYPTO 2017. Based on MILP modelled division property, for a cube (index set) I, they identify the small (index) subset J of the secret key bits involved in the resultant superpoly. During the precomputation phase which dominates the complexity of the cube attacks, \(2^{|I|+|J|}\) encryptions are required to recover the superpoly. Therefore, their attacks can only be available when the restriction \(|I|+|J|<n\) is met.

In this paper, we introduced several techniques to improve the division property based cube attacks by exploiting various algebraic properties of the superpoly.

  1. 1.

    We propose the “flag” technique to enhance the preciseness of MILP models so that the proper non-cube IV assignments can be identified to obtain a non-constant superpoly.

     
  2. 2.

    A degree evaluation algorithm is presented to upper bound the degree of the superpoly. With the knowledge of its degree, the superpoly can be recovered without constructing its whole truth table. This enables us to explore larger cubes I’s even if \(|I|+|J|\ge n\).

     
  3. 3.

    We provide a term enumeration algorithm for finding the monomials of the superpoly, so that the complexity of many attacks can be further reduced.

     

As an illustration, we apply our techniques to attack the initialization of several ciphers. To be specific, our key recovery attacks have mounted to 839-round Trivium, 891-round Kreyvium, 184-round Grain-128a and 750-round Acornrespectively.

Keywords

Cube attack Division property MILP Trivium Kreyvium Grain-128a Acorn Clique 

Notes

Acknowledgements

We would like to thank Christian Rechberger, Elmar Tischhauser, Lorenzo Grassi and Liang Zhong for their fruitful discussions, and the anonymous reviewers for their valuable comments. This work is supported by University of Luxembourg project - FDISC, National Key Research and Development Program of China (Grant No. 2018YFA0306404), National Natural Science Foundation of China (No. 61472250, No. 61672347), Program of Shanghai Academic/Technology Research Leader (No. 16XD1401300), the Research Council KU Leuven: C16/15/058, OT/13/071, the Flemish Government through FWO projects and by European Union’s Horizon 2020 research and innovation programme under grant agreement No. H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

References

  1. 1.
    Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 502–517. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.-H.: Investigating cube attacks on the authenticated encryption stream cipher ACORN. In: Batten, L., Li, G. (eds.) ATIS 2016. CCIS, vol. 651, pp. 15–26. Springer, Singapore (2016)Google Scholar
  6. 6.
    Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018)CrossRefGoogle Scholar
  7. 7.
    Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 733–761. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017)CrossRefGoogle Scholar
  9. 9.
    Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017)CrossRefGoogle Scholar
  10. 10.
    Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ASCON. IACR Trans. Symmetric Cryptol. 2017(1), 175–202 (2017)Google Scholar
  11. 11.
    Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like attack on round-reduced initialization of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1), 259–280 (2017)Google Scholar
  12. 12.
    Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017)CrossRefGoogle Scholar
  13. 13.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015)Google Scholar
  14. 14.
    Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  16. 16.
    Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  17. 17.
    Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer. http://www.gurobi.com/
  18. 18.
    Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primitives with non-bit-permutation linear layers. Cryptology ePrint Archive, Report 2016/811 (2016). https://eprint.iacr.org/2016/811
  19. 19.
    Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017)CrossRefGoogle Scholar
  20. 20.
    Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Improved integral attack on HIGHT. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017, Part I. LNCS, vol. 10342, pp. 363–383. Springer, Cham (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permutations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 279–299. Springer, Cham (2018)CrossRefGoogle Scholar
  22. 22.
    Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property (full version). Cryptology ePrint Archive, Report 2017/306 (2017). https://eprint.iacr.org/2017/306CrossRefGoogle Scholar
  23. 23.
    Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017)CrossRefGoogle Scholar
  24. 24.
    Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round Trivium. Cryptology ePrint Archive, Report 2018/198 (2018). https://eprint.iacr.org/2018/198Google Scholar
  25. 25.
    Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks exploiting algebraic properties of superpoly (full version). Cryptology ePrint Archive, Report 2017/1063 (2017). https://eprint.iacr.org/2017/1063
  26. 26.
    Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revisited-cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 129–159. Springer, Cham (2018)Google Scholar
  27. 27.
    Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 1–11. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014)Google Scholar
  30. 30.
    Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014). https://eprint.iacr.org/2014/747
  31. 31.
    Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impossible differentials and zero-correlation linear approximations. Cryptology ePrint Archive, Report 2016/689 (2016). https://eprint.iacr.org/2016/689
  32. 32.
    Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 185–215. Springer, Cham (2017)CrossRefGoogle Scholar
  33. 33.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Technical University of DenmarkKongens LyngbyDenmark
  3. 3.SnT, University of LuxembourgEsch-sur-AlzetteLuxembourg
  4. 4.State Key Laboratory of CryptologyBeijingChina
  5. 5.NTT Secure Platform LaboratoriesTokyoJapan
  6. 6.imec-COSIC, Department of Electrical Engineering (ESAT)KU LeuvenLeuvenBelgium
  7. 7.University of HyogoKobeJapan
  8. 8.FHNWWindischSwitzerland

Personalised recommendations