Advertisement

Constrained PRFs for \(\mathrm{NC}^1\) in Traditional Groups

  • Nuttapong Attrapadung
  • Takahiro Matsuda
  • Ryo Nishimaki
  • Shota Yamada
  • Takashi Yamakawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10992)

Abstract

We propose new constrained pseudorandom functions (CPRFs) in traditional groups. Traditional groups mean cyclic and multiplicative groups of prime order that were widely used in the 1980s and 1990s (sometimes called “pairing free” groups). Our main constructions are as follows.

  • We propose a selectively single-key secure CPRF for circuits with depth \(O(\log n)\) (that is, NC\(^1\) circuits) in traditional groups where n is the input size. It is secure under the L-decisional Diffie-Hellman inversion (L-DDHI) assumption in the group of quadratic residues \(\mathbb {QR}_q\) and the decisional Diffie-Hellman (DDH) assumption in a traditional group of order q in the standard model.

  • We propose a selectively single-key private bit-fixing CPRF in traditional groups. It is secure under the DDH assumption in any prime-order cyclic group in the standard model.

  • We propose adaptively single-key secure CPRF for NC\(^1\) and private bit-fixing CPRF in the random oracle model.

To achieve the security in the standard model, we develop a new technique using correlated-input secure hash functions.

Notes

Acknowledgement

We thank Keita Xagawa for letting us know the relation between CIH and RKA-PRG. The first, second, and fourth authors were supported by JST CREST Grant No. JPMJCR1688. The fourth author was supported by JSPS KAKENHI Grant Number 16K16068.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_5CrossRefGoogle Scholar
  2. 2.
    Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_24CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Constrained PRFs for \( {NC}^1\) in traditional groups. IACR Cryptol. ePrint Arch. 2018, 154 (2018)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_4CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. IACR Cryptol. ePrint Arch., 397 (2010). Version 20150729:233210. Preliminary Version Appeared in CRYPTO 2010Google Scholar
  6. 6.
    Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_36CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_2CrossRefGoogle Scholar
  9. 9.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 601–648 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  11. 11.
    Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_19CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_15CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_17CrossRefGoogle Scholar
  14. 14.
    Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and mode) from LWE. In: TCC 2017 (2017)CrossRefGoogle Scholar
  15. 15.
    Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_1CrossRefGoogle Scholar
  16. 16.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_15CrossRefGoogle Scholar
  17. 17.
    Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_19CrossRefGoogle Scholar
  18. 18.
    Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. In: EUROCRYPT 2017, Part I, pp. 446–476 (2017)Google Scholar
  19. 19.
    Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom functions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_3CrossRefGoogle Scholar
  20. 20.
    Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–839 (1985)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_18CrossRefGoogle Scholar
  22. 22.
    Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18CrossRefGoogle Scholar
  23. 23.
    Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_5CrossRefGoogle Scholar
  24. 24.
    Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_5CrossRefGoogle Scholar
  25. 25.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1CrossRefGoogle Scholar
  26. 26.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45(3), 882–929 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_18CrossRefGoogle Scholar
  29. 29.
    Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_16CrossRefGoogle Scholar
  30. 30.
    Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_12CrossRefGoogle Scholar
  31. 31.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  32. 32.
    Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom functions. IACR Cryptol. ePrint Arch. 2014, 720 (2014)Google Scholar
  33. 33.
    Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudorandom functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_4CrossRefMATHGoogle Scholar
  34. 34.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  35. 35.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. ACMCCS 2013, 669–684 (2013)Google Scholar
  36. 36.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_23CrossRefGoogle Scholar
  38. 38.
    Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_6CrossRefGoogle Scholar
  39. 39.
    Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_16CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Nuttapong Attrapadung
    • 1
  • Takahiro Matsuda
    • 1
  • Ryo Nishimaki
    • 2
  • Shota Yamada
    • 1
  • Takashi Yamakawa
    • 2
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  2. 2.Secure Platform LaboratoriesNTT CorporationTokyoJapan

Personalised recommendations