Advertisement

Two-Round Multiparty Secure Computation Minimizing Public Key Operations

  • Sanjam Garg
  • Peihan Miao
  • Akshayaram Srinivasan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

We show new constructions of semi-honest and malicious two-round multiparty secure computation protocols using only (a fixed) \(\mathsf {poly}(n,\lambda )\) invocations of a two-round oblivious transfer protocol (which use expensive public-key operations) and \(\mathsf {poly}(\lambda , |C|)\) cheaper one-way function calls, where \(\lambda \) is the security parameter, n is the number of parties, and C is the circuit being computed. All previously known two-round multiparty secure computation protocols required \(\mathsf {poly}(\lambda ,|C|)\) expensive public-key operations.

References

  1. [ACJ17]
    Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_16CrossRefGoogle Scholar
  2. [AIKW13]
    Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with constant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_10CrossRefGoogle Scholar
  3. [ALSZ17]
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer extensions. J. Cryptol. 30(3), 805–858 (2017)MathSciNetCrossRefGoogle Scholar
  4. [Bea96]
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, 22–24 May 1996, pp. 479–488 (1996)Google Scholar
  5. [BGI16]
    Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_19CrossRefGoogle Scholar
  6. [BGI+17a]
    Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_10CrossRefzbMATHGoogle Scholar
  7. [BGI17b]
    Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_6CrossRefGoogle Scholar
  8. [BGJ+17]
    Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. Cryptology ePrint Archive, Report 2017/1088 (2017). https://eprint.iacr.org/2017/1088
  9. [BHP17]
    Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_22CrossRefGoogle Scholar
  10. [BHR12]
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012Google Scholar
  11. [BL18]
    Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled interactive circuits. In: EUROCRYPT (2018, to appear). https://eprint.iacr.org/2017/1125
  12. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990Google Scholar
  13. [BP16]
    Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_8CrossRefGoogle Scholar
  14. [Can00a]
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefGoogle Scholar
  15. [Can00b]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.org/2000/067
  16. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  17. [COSV17]
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_23CrossRefGoogle Scholar
  18. [FS90]
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: 22nd ACM STOC, pp. 416–426. ACM Press, May 1990Google Scholar
  19. [GGH+13]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  20. [GGHR14]
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_4CrossRefGoogle Scholar
  21. [GGM86]
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  22. [GGSW13]
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, June 2013Google Scholar
  23. [GLS15]
    Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_4CrossRefGoogle Scholar
  24. [GMM17a]
    Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_22CrossRefGoogle Scholar
  25. [GMM17b]
    Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 82–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_4CrossRefGoogle Scholar
  26. [GMMM17]
    Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity of OT extension. Cryptology ePrint Archive, Report 2017/1187 (2017). https://eprint.iacr.org/2017/1187
  27. [GMPP16]
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_16CrossRefGoogle Scholar
  28. [GMS18]
    Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation minimizing public key operations. Cryptology ePrint Archive, Report 2018/180 (2018). https://eprint.iacr.org/2018/180
  29. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987Google Scholar
  30. [GS17]
    Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)Google Scholar
  31. [GS18]
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16. https://eprint.iacr.org/2017/1156CrossRefGoogle Scholar
  32. [HHPV17]
    Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. Cryptology ePrint Archive, Report 2017/1056 (2017). http://eprint.iacr.org/2017/1056
  33. [HIK07]
    Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed for secure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_16CrossRefGoogle Scholar
  34. [HIKN08]
    Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_22CrossRefGoogle Scholar
  35. [HJO+16]
    Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_6CrossRefGoogle Scholar
  36. [HLP11]
    Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_8CrossRefGoogle Scholar
  37. [IKNP03]
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  38. [JKK+17]
    Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_5CrossRefGoogle Scholar
  39. [JKKR17]
    Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_6CrossRefzbMATHGoogle Scholar
  40. [JW16]
    Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_17CrossRefzbMATHGoogle Scholar
  41. [KK13]
    Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_4CrossRefGoogle Scholar
  42. [KRS16]
    Kumaresan, R., Raghuraman, S., Sealfon, A.: Network oblivious transfer. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 366–396. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_13CrossRefGoogle Scholar
  43. [LP09]
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)MathSciNetCrossRefGoogle Scholar
  44. [MW16]
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_26CrossRefGoogle Scholar
  45. [Nie07]
    Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness almost for free. Cryptology ePrint Archive, Report 2007/215 (2007). http://eprint.iacr.org/2007/215
  46. [NNOB12]
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_40CrossRefGoogle Scholar
  47. [PS16]
    Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_9CrossRefGoogle Scholar
  48. [Yao82]
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Peihan Miao
    • 1
  • Akshayaram Srinivasan
    • 1
  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations