Advertisement

TinyKeys: A New Approach to Efficient Multi-Party Computation

  • Carmit Hazay
  • Emmanuela Orsini
  • Peter Scholl
  • Eduardo Soria-Vazquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10993)

Abstract

We present a new approach to designing concretely efficient MPC protocols with semi-honest security in the dishonest majority setting. Motivated by the fact that within the dishonest majority setting the efficiency of most practical protocols does not depend on the number of honest parties, we investigate how to construct protocols which improve in efficiency as the number of honest parties increases. Our central idea is to take a protocol which is secure for \(n-1\) corruptions and modify it to use short symmetric keys, with the aim of basing security on the concatenation of all honest parties’ keys. This results in a more efficient protocol tolerating fewer corruptions, whilst also introducing an LPN-style syndrome decoding assumption.

We first apply this technique to a modified version of the semi-honest GMW protocol, using OT extension with short keys, to improve the efficiency of standard GMW with fewer corruptions. We also obtain more efficient constant-round MPC, using BMR-style garbled circuits with short keys, and present an implementation of the online phase of this protocol. Our techniques start to improve upon existing protocols when there are around \(n=20\) parties with \(h=6\) honest parties, and as these increase we obtain up to a 13 times reduction (for \(n=400, h=120\)) in communication complexity for our GMW variant, compared with the best-known GMW-based protocol modified to use the same threshold.

References

  1. [ADS+17]
    Asharov, G., Demmler, D., Schapira, M., Schneider, T., Segev, G., Shenker, S., Zohner, M.: Privacy-preserving interdomain routing at internet scale. PoPETs 2017(3), 147 (2017)Google Scholar
  2. [AFL+16]
    Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 805–817. ACM Press, October 2016Google Scholar
  3. [AFS03]
    Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. IACR Cryptology ePrint Archive 2003:230 (2003)Google Scholar
  4. [AJL+12]
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_29CrossRefGoogle Scholar
  5. [ALSZ13]
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press, November 2013Google Scholar
  6. [App16]
    Applebaum, B.: Garbling XOR gates “for free” in the standard model. J. Cryptol. 29(3), 552–576 (2016)MathSciNetCrossRefGoogle Scholar
  7. [Bea92]
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_34CrossRefGoogle Scholar
  8. [BLO16]
    Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 578–590. ACM Press, October 2016Google Scholar
  9. [BLO17]
    Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 471–498. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_17CrossRefGoogle Scholar
  10. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990Google Scholar
  11. [BO17]
    Ben-Efraim, A., Omri, E.: Concrete efficiency improvements for multiparty garbling with an honest majority. In: Latincrypt 2017 (2017)Google Scholar
  12. [BOGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988Google Scholar
  13. [Bra85]
    Bracha, G.: An \(O(\operatorname{lg} n)\) expected rounds randomized byzantine generals protocol. In: 17th ACM STOC, pp. 316–326. ACM Press, May 1985Google Scholar
  14. [Can01]
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  15. [CCD88]
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988Google Scholar
  16. [DKS+17]
    Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication barrier in secure computation using lookup tables. In: NDSS (2017)Google Scholar
  17. [DMS04]
    Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion router. In: USENIX, pp. 303–320 (2004)Google Scholar
  18. [DN07]
    Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_32CrossRefGoogle Scholar
  19. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  20. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987Google Scholar
  21. [Gol04]
    Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  22. [HOSS18]
    Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient MPC from syndrome decoding (or: Honey, I shrunk the keys) (2018). https://eprint.iacr.org/2018/208
  23. [HSS17]
    Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_21CrossRefGoogle Scholar
  24. [IKNP03]
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  25. [KK13]
    Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_4CrossRefGoogle Scholar
  26. [KMR14]
    Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_25CrossRefGoogle Scholar
  27. [KS08]
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefMATHGoogle Scholar
  28. [LPSY15]
    Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_16CrossRefGoogle Scholar
  29. [LSS16]
    Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53641-4_21CrossRefGoogle Scholar
  30. [NR17]
    Nielsen, J.B., Ranellucci, S.: On the computational overhead of MPC with dishonest majority. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 369–395. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_13CrossRefGoogle Scholar
  31. [TX03]
    Tate, S.R., Xu, K.: On garbled circuits and constant round secure function evaluation. CoPS Lab, University of North Texas, Technical report 2:2003 (2003)Google Scholar
  32. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986Google Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Carmit Hazay
    • 1
  • Emmanuela Orsini
    • 2
  • Peter Scholl
    • 3
  • Eduardo Soria-Vazquez
    • 4
  1. 1.Bar-Ilan UniversityRamat GanIsrael
  2. 2.KU Leuven ESAT/COSICLeuvenBelgium
  3. 3.Aarhus UniversityAarhusDenmark
  4. 4.University of BristolBristolUK

Personalised recommendations