Advertisement

The Many Roads to an Ideal Paper-based Device

  • Margot Karlikow
  • Keith PardeeEmail author
Chapter

Abstract

The recent Zika and Ebola virus outbreaks highlight the need for low-cost diagnostics that can be rapidly deployed and used outside of established clinical infrastructure. This demand for robust point-of-care (POC) diagnostics is further driven by the increasing burden of drug-resistant diseases, concern for food and water safety, and bioterrorism. As has been discussed in previous chapters, paper-based tests provide a simple and compelling solution to such needs.

References

  1. 1.
    Yagoda H (1937) Applications of confined spot tests in analytical chemistry: preliminary paper. Ind Eng Chem Anal Ed 9:79–82CrossRefGoogle Scholar
  2. 2.
    Davies RJ, Eapen SS, Carlisle SJ (2008) Lateral-flow Immunochromatographic assays. In: Handbook of biosensors and biochips. John Wiley & Sons, Ltd, New JerseyCrossRefGoogle Scholar
  3. 3.
    Anderson CE, Shah KG, Yager P (2017) Sensitive protein detection and quantification in paper-based microfluidics for the point of care. Methods Enzymol 589:383–411CrossRefGoogle Scholar
  4. 4.
    Sia SK, Linder V, Parviz BA, Siegel A, Whitesides GM (2004) An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem Int Ed 43:498–502CrossRefGoogle Scholar
  5. 5.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  6. 6.
    WHO (2004) TDR|Mapping the landscape of diagnostics for sexually transmitted infections [WWW Document]. WHO. http://www.who.int/tdr/publications/tdr-research-publications/mapping-landscape-sti/en/. Accessed 7 July 2017
  7. 7.
    Brehm-Stecher B, Young C, Jaykus L-A, Tortorello ML (2009) Sample preparation: the forgotten beginning. J Food Prot 72:1774–1789CrossRefGoogle Scholar
  8. 8.
    Mariella R (2008) Sample preparation: the weak link in microfluidics-based biodetection. Biomed Microdevices 10:777–784CrossRefGoogle Scholar
  9. 9.
    Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250CrossRefGoogle Scholar
  10. 10.
    Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F (2016) Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 1–18Google Scholar
  11. 11.
    Kumar AA, Hennek JW, Smith BS, Kumar S, Beattie P, Jain S, Rolland JP, Stossel TP, Chunda-Liyoka C, Whitesides GM (2015) From the bench to the field in low-cost diagnostics: two case studies. Angew Chem Int Ed Engl 54:5836–5853CrossRefGoogle Scholar
  12. 12.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867CrossRefGoogle Scholar
  13. 13.
    Obermoser G, Presnell S, Domico K, Xu H, Wang Y, Anguiano E, Thompson-Snipes L, Ranganathan R, Zeitner B, Bjork A, Anderson D, Speake C, Ruchaud E, Skinner J, Alsina L, Sharma M, Dutartre H, Cepika A, Israelsson E, Nguyen P, Nguyen Q-A, Harrod AC, Zurawski SM, Pascual V, Ueno H, Nepom GT, Quinn C, Blankenship D, Palucka K, Banchereau J, Chaussabel D (2013) Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines. Immunity 38:831–844CrossRefGoogle Scholar
  14. 14.
    Robison EH, Mondala TS, Williams AR, Head SR, Salomon DR, Kurian SM (2009) Whole genome transcript profiling from fingerstick blood samples: a comparison and feasibility study. BMC Genomics 10:617CrossRefGoogle Scholar
  15. 15.
    Paliwal S, Hwang BH, Tsai KY, Mitragotri S (2013) Diagnostic opportunities based on skin biomarkers. Eur J Pharm Sci 50:546–556CrossRefGoogle Scholar
  16. 16.
    Fernando GJP, Chen X, Prow TW, Crichton ML, Fairmaid EJ, Roberts MS, Frazer IH, Brown LE, Kendall MAF (2010) Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One 5:e10266CrossRefGoogle Scholar
  17. 17.
    Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, Daddona PE (2002) Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70CrossRefGoogle Scholar
  18. 18.
    Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587CrossRefGoogle Scholar
  19. 19.
    Wang PM, Cornwell M, Prausnitz MR (2005) Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther 7:131–141CrossRefGoogle Scholar
  20. 20.
    Corrie SR, Fernando GJP, Crichton ML, Brunck MEG, Anderson CD, Kendall MAF (2010) Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip 10:2655–2658CrossRefGoogle Scholar
  21. 21.
    Lee KT, Muller DA, Coffey JW, Robinson KJ, McCarthy JS, Kendall MAF, Corrie SR (2014) Capture of the circulating Plasmodium falciparum biomarker HRP2 in a multiplexed format, via a wearable skin patch. Anal Chem 86:10474–10483CrossRefGoogle Scholar
  22. 22.
    Matriano JA, Cormier MJN (2004). Method for transdermal nucleic acid sampling. US6749575 B2Google Scholar
  23. 23.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial Flora of the oral cavity. J Clin Microbiol 43:5721–5732CrossRefGoogle Scholar
  24. 24.
    Muzanye G, Morgan K, Johnson J, Mayanja-Kizza H (2009) Impact of mouth rinsing before sputum collection on culture contamination. Afr Health Sci 9:200Google Scholar
  25. 25.
    Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010a) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015CrossRefGoogle Scholar
  26. 26.
    Ferguson TM, Weigel KM, Lakey Becker A, Ontengco D, Narita M, Tolstorukov I, Doebler R, Cangelosi GA, Niemz A (2016a) Pilot study of a rapid and minimally instrumented sputum sample preparation method for molecular diagnosis of tuberculosis. Sci Rep 6:19541CrossRefGoogle Scholar
  27. 27.
    Chanda-Kapata P, Kapata N, Klinkenberg E, Grobusch MP, Cobelens F (2017) The prevalence of HIV among adults with pulmonary TB at a population level in Zambia. BMC Infect Dis 17:236CrossRefGoogle Scholar
  28. 28.
    Perkins MD, Cunningham J (2007) Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis 196:S15–S27CrossRefGoogle Scholar
  29. 29.
    Mansuy JM, Mengelle C, Pasquier C, Chapuy-Regaud S, Delobel P, Martin-Blondel G, Izopet J (2017) Zika virus infection and prolonged Viremia in whole-blood specimens. Emerg Infect Dis 23:863–865CrossRefGoogle Scholar
  30. 30.
    Barzon L, Pacenti M, Berto A, Sinigaglia A, Franchin E, Lavezzo E, Brugnaro P, Palù G (2016) Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Eur Secur 21:30159CrossRefGoogle Scholar
  31. 31.
    Atkinson B, Hearn P, Afrough B, Lumley S, Carter D, Aarons EJ, Simpson AJ, Brooks TJ, Hewson R (2016) Detection of Zika virus in semen. Emerg Infect Dis 22:940CrossRefGoogle Scholar
  32. 32.
    Mansuy JM, Dutertre M, Mengelle C, Fourcade C, Marchou B, Delobel P, Izopet J, Martin-Blondel G (2016) Zika virus: high infectious viral load in semen, a new sexually transmitted pathogen? Lancet Infect Dis 16:405CrossRefGoogle Scholar
  33. 33.
    Panpradist N, Toley BJ, Zhang X, Byrnes S, Buser JR, Englund JA, Lutz BR (2014) Swab sample transfer for point-of-care diagnostics: characterization of swab types and manual agitation methods. PLoS One 9:e105786CrossRefGoogle Scholar
  34. 34.
    Huang S, Abe K, Bennett S, Liang T, Ladd PD, Yokobe L, Anderson CE, Shah K, Bishop J, Purfield M, Kauffman PC, Paul S, Welch AE, Strelitz B, Follmer K, Pullar K, Sanchez-Erebia L, Gerth-Guyette E, Domingo GJ, Klein E, Englund JA, Fu E, Yager P (2017) Disposable autonomous device for rapid swab-to-result diagnosis of influenza. Anal ChemGoogle Scholar
  35. 35.
    Liu C, Mauk M, Gross R, Bushman FD, Edelstein PH, Collman RG, Bau HH (2013) Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal Chem 85:10463–10470CrossRefGoogle Scholar
  36. 36.
    Son JH, Lee SH, Hong S, Park S, Lee J, Dickey AM, Lee LP (2014) Hemolysis-free blood plasma separation. Lab Chip 14:2287–2292CrossRefGoogle Scholar
  37. 37.
    Chatterjee A, Mirer PL, Zaldivar Santamaria E, Klapperich C, Sharon A, Sauer-Budge AF (2010) RNA isolation from mammalian cells using porous polymer monoliths: an approach for high-throughput automation. Anal Chem 82:4344–4356CrossRefGoogle Scholar
  38. 38.
    Song S, Singh AK, Kirby BJ (2004) Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem 76:4589–4592CrossRefGoogle Scholar
  39. 39.
    Zhu L, Zhang Q, Feng H, Ang S, Chau FS, Liu W-T (2004) Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab Chip 4:337–341CrossRefGoogle Scholar
  40. 40.
    Van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263CrossRefGoogle Scholar
  41. 41.
    Byrnes SA, Bishop JD, Lafleur L, Buser JR, Lutz B, Yager P (2015) One-step purification and concentration of DNA in porous membranes for point-of-care applications. Lab Chip 15:2647–2659CrossRefGoogle Scholar
  42. 42.
    D’Amico L, Ajami NJ, Adachi JA, Gascoyne PRC, Petrosino JF (2017) Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip 17:1340–1348CrossRefGoogle Scholar
  43. 43.
    Walker GM, Beebe DJ (2002) An evaporation-based microfluidic sample concentration method. Lab Chip 2:57–61CrossRefGoogle Scholar
  44. 44.
    Wong SY, Cabodi M, Rolland J, Klapperich CM (2014) Evaporative concentration on a paper-based device to concentrate analytes in a biological fluid. Anal Chem 86:11981–11985CrossRefGoogle Scholar
  45. 45.
    Choi K, Boyacı E, Kim J, Seale B, Barrera-Arbelaez L, Pawliszyn J, Wheeler AR (2016) A digital microfluidic interface between solid-phase microextraction and liquid chromatography-mass spectrometry. J Chromatogr A 1444:1–7CrossRefGoogle Scholar
  46. 46.
    Allen V, Nicol MP, Tow LA (2016) Sputum processing prior to Mycobacterium tuberculosis detection by culture or nucleic acid amplification testing: a narrative review. Res Rev J Microbiol Biotechnol 17(Suppl 1):69Google Scholar
  47. 47.
    Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, Gler MT, Blakemore R, Worodria W, Gray C, Huang L, Caceres T, Mehdiyev R, Raymond L, Whitelaw A, Sagadevan K, Alexander H, Albert H, Cobelens F, Cox H, Alland D, Perkins MD (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377:1495–1505CrossRefGoogle Scholar
  48. 48.
    Mirzayev F (2012) Current dynamics in the Xpert MTB/RIF assay pricing mechanisms [WWW Document]. http://www.stoptb.org/wg/gli/assets/html/day%202/Mirzayev%20-%20Xpert%20cartridge%20price%20dynamics.pdf. Accessed 27 June 17
  49. 49.
    Puri L, Oghor C, Denkinger CM, Pai M (2016) Xpert MTB/RIF for tuberculosis testing: access and price in highly privatised health markets. Lancet Glob Health 4:e94–e95CrossRefGoogle Scholar
  50. 50.
    Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol (Camb) 1:574–586CrossRefGoogle Scholar
  51. 51.
    Sambrook J, Russel DW (2001) Molecular cloning a LABORATORY MANUAL. Cold Spring Harbor, New YorkGoogle Scholar
  52. 52.
    Heiniger EK, Buser JR, Mireles L, Zhang X, Ladd PD, Lutz BR, Yager P (2016) Comparison of point-of-care-compatible lysis methods for bacteria and viruses. J Microbiol Methods 128:80–87CrossRefGoogle Scholar
  53. 53.
    Lee W-C, Lien K-Y, Lee G-B, Lei H-Y (2008) An integrated microfluidic system using magnetic beads for virus detection. Diagn Microbiol Infect Dis 60:51–58CrossRefGoogle Scholar
  54. 54.
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O’Connor DH, Gehrke L, Collins JJ (2016a) Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 165:1255–1266CrossRefGoogle Scholar
  55. 55.
    Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal Chem 70:158–162CrossRefGoogle Scholar
  56. 56.
    Gumus A, Ahsan S, Dogan B, Jiang L, Snodgrass R, Gardner A, Lu Z, Simpson K, Erickson D (2016) Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings. Biomed Opt Express 7:1974–1984CrossRefGoogle Scholar
  57. 57.
    Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787CrossRefGoogle Scholar
  58. 58.
    Leonard RB, Carroll KC (1997) Rapid lysis of gram-positive cocci for pulsed-field gel electrophoresis using achromopeptidase. Diagn Mol Pathol 6:288–291CrossRefGoogle Scholar
  59. 59.
    Slifkin M, Cumbie R (1987) Serogrouping single colonies of beta-hemolytic streptococci with achromopeptidase extraction. [WWW Document]. http://jcm.asm.org/content/25/8/1555.short. Accessed 7 July 2017
  60. 60.
    Buser JR, Zhang X, Byrnes SA, Ladd PD, Heiniger EK, Wheeler MD, Bishop JD, Englund JA, Lutz B, Weigl BH, Yager P (2016) A disposable chemical heater and dry enzyme preparation for lysis and extraction of DNA and RNA from microorganisms. Anal Methods 8:2880–2886CrossRefGoogle Scholar
  61. 61.
    Hilligoss D, Keller LM, Ramadan S, Coady J, Hellyer TJ (2011) Use of achromopeptidase for lysis at room temperature. WO2011115975 A2Google Scholar
  62. 62.
    Schilling EA, Kamholz AE, Yager P (2002) Cell Lysis and protein extraction in a microfluidic device with detection by a Fluorogenic enzyme assay. Anal Chem 74:1798–1804CrossRefGoogle Scholar
  63. 63.
    Byrnes S, Fan A, Trueb J, Jareczek F, Mazzochette M, Sharon A, Sauer-Budge AF, Klapperich CM (2013) A portable, pressure driven, room temperature nucleic acid extraction and storage system for point of care molecular diagnostics. Anal Methods 5:3177–3184CrossRefGoogle Scholar
  64. 64.
    Jangam SR, Agarwal AK, Sur K, Kelso DM (2013) A point-of-care PCR test for HIV-1 detection in resource-limited settings. Biosens Bioelectron 42:69–75CrossRefGoogle Scholar
  65. 65.
    Jangam SR, Yamada DH, McFall SM, Kelso DM (2009) Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol 47:2363–2368CrossRefGoogle Scholar
  66. 66.
    McFall SM, Wagner RL, Jangam SR, Yamada DH, Hardie D, Kelso DM (2015) A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR. J Virol Methods 214:37–42CrossRefGoogle Scholar
  67. 67.
    Di Carlo D, Jeong K-H, Lee LP (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3:287–291CrossRefGoogle Scholar
  68. 68.
    Doebler RW, Erwin B, Hickerson A, Irvine B, Woyski D, Nadim A, Sterling JD (2009) Continuous-flow, rapid Lysis devices for biodefense nucleic acid diagnostic systems. J Assoc Lab Autom 14:119–125CrossRefGoogle Scholar
  69. 69.
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442CrossRefGoogle Scholar
  70. 70.
    ClaremontBio. OmniLyse® Lysis Cartridges|ClaremontBio.com [WWW Document]. URL http://www.claremontbio.com/OmniLyse_Cell_Disruption_Kits_s/27.htm. Accessed 7 July 2017
  71. 71.
    Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 71:4232–4236CrossRefGoogle Scholar
  72. 72.
    Baier T, Hansen-Hagge TE, Gransee R, Crombé A, Schmahl S, Paulus C, Drese KS, Keegan H, Martin C, O’Leary JJ, Furuberg L, Solli L, Grønn P, Falang IM, Karlgård A, Gulliksen A, Karlsen F (2009) Hands-free sample preparation platform for nucleic acid analysis. Lab Chip 9:3399–3405CrossRefGoogle Scholar
  73. 73.
    Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:174–181CrossRefGoogle Scholar
  74. 74.
    Hülsheger H, Potel J, Niemann EG (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22:149–162CrossRefGoogle Scholar
  75. 75.
    Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol Lond Engl 10:877–890CrossRefGoogle Scholar
  76. 76.
    Luft C, Ketteler R (2015) Electroporation knows no boundaries: the use of electrostimulation for siRNA delivery in cells and tissues. J Biomol Screen 20:932–942CrossRefGoogle Scholar
  77. 77.
    Gao J, Yin X-F, Fang Z-L (2004) Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4:47–52CrossRefGoogle Scholar
  78. 78.
    Ameri SK, Singh PK, Dokmeci MR, Khademhosseini A, Xu Q, Sonkusale SR (2014) All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosens Bioelectron 54:462–467CrossRefGoogle Scholar
  79. 79.
    Lee DW, Cho YH (2007) A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture - ScienceDirect [WWW Document]. URL http://www.sciencedirect.com/science/article/pii/S0925400506008033. Accessed 7 July 2017
  80. 80.
    Wang H-Y, Banada PP, Bhunia AK, Lu C (2007) Rapid electrical lysis of bacterial cells in a microfluidic device. Methods Mol Biol 385:23–35CrossRefGoogle Scholar
  81. 81.
    Besant JD, Das J, Sargent EH, Kelley SO (2013) Proximal bacterial lysis and detection in nanoliter wells using electrochemistry. ACS Nano 7:8183–8189CrossRefGoogle Scholar
  82. 82.
    Lessing J, Glavan AC, Walker SB, Keplinger C, Lewis JA, Whitesides GM (2014) Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper-based electronics and MEMS. Adv Mater 26:4677–4682CrossRefGoogle Scholar
  83. 83.
    Glavan AC, Christodouleas DC, Mosadegh B, Yu HD, Smith BS, Lessing J, Fernández-Abedul MT, Whitesides GM (2014) Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper. Anal Chem 86:11999–12007CrossRefGoogle Scholar
  84. 84.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483CrossRefGoogle Scholar
  85. 85.
    Nguyen TH, Fraiwan A, Choi S (2014) Paper-based batteries: a review. Biosens Bioelectron 54:640–649CrossRefGoogle Scholar
  86. 86.
    Cunningham JC, DeGregory PR, Crooks RM (2016) New functionalities for paper-based sensors lead to simplified user operation, lower limits of detection, and new applications. Annu Rev Anal Chem (Palo Alto, Calif) 9:183–202CrossRefGoogle Scholar
  87. 87.
    Gaydos C, Hardick J (2014) Point of care diagnostics for sexually transmitted infections: perspectives and advances. Expert Rev Anti-Infect Ther 12:657–672CrossRefGoogle Scholar
  88. 88.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597CrossRefGoogle Scholar
  89. 89.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41CrossRefGoogle Scholar
  90. 90.
    Parolo C, de la Escosura-Muñiz A, Merkoçi A (2013a) Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron 40:412–416CrossRefGoogle Scholar
  91. 91.
    Gerbers R, Foellscher W, Chen H, Anagnostopoulos C, Faghri M (2014) A new paper-based platform technology for point-of-care diagnostics. Lab Chip 14:4042–4049CrossRefGoogle Scholar
  92. 92.
    Li J, Baird MA, Davis MA, Tai W, Zweifel LS, Waldorf KMA, Gale M Jr, Rajagopal L, Pierce RH, Gao X (2017) Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat Biomed Eng 1:0082CrossRefGoogle Scholar
  93. 93.
    Ramachandran S, Fu E, Lutz B, Yager P (2014) Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 139:1456–1462CrossRefGoogle Scholar
  94. 94.
    Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D, Ferrante T, McSorley FR, Furuta Y, Vernet A, Lewandowski M, Boddy CN, Joshi NS, Collins JJ (2016b) Portable, on-demand biomolecular manufacturing. Cell 167:248–259.e12CrossRefGoogle Scholar
  95. 95.
    Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946CrossRefGoogle Scholar
  96. 96.
    Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR (2012) A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One 7:e45611CrossRefGoogle Scholar
  97. 97.
    Yuan L, Hua X, Wu Y, Pan X, Liu S (2011) Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem 83:6800–6809CrossRefGoogle Scholar
  98. 98.
    Nielsen K, Yu WL, Lin M, Davis SAN, Elmgren C, Mackenzie R, Tanha J, Li S, Dubuc G, Brown EG, Keleta L, Pasick J (2007) Prototype single step lateral flow technology for detection of avian influenza virus and chicken antibody to avian influenza virus. J Immunoassay Immunochem 28:307–318CrossRefGoogle Scholar
  99. 99.
    Connolly R, O’Kennedy R (2017) Magnetic lateral flow immunoassay test strip development --- considerations for proof of concept evaluation. Methods San Diego Calif 116:132–140CrossRefGoogle Scholar
  100. 100.
    Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545CrossRefGoogle Scholar
  101. 101.
    Chun P (2009) Colloidal gold and other labels for lateral flow immunoassays. In: Lateral flow immunoassay. Humana Press, New YorkGoogle Scholar
  102. 102.
    Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752CrossRefGoogle Scholar
  103. 103.
    Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60:111–120CrossRefGoogle Scholar
  104. 104.
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRefGoogle Scholar
  105. 105.
    Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63CrossRefGoogle Scholar
  106. 106.
    Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y (2014) Nanomaterial-enhanced paper-based biosensors. TrAC, Trends in Anal Chem 58:31–39CrossRefGoogle Scholar
  107. 107.
    Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012a) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579CrossRefGoogle Scholar
  108. 108.
    Parolo C, Medina-Sánchez M, de la Escosura-Muñiz A, Merkoçi A (2013b) Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip 13:386–390CrossRefGoogle Scholar
  109. 109.
    Zhang C, Zhang Y, Wang S (2006) Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J Agric Food Chem 54:2502–2507CrossRefGoogle Scholar
  110. 110.
    Danscher G, Nørgaard JO, Baatrup E (1987) Autometallography: tissue metals demonstrated by a silver enhancement kit. Histochemistry 86:465–469CrossRefGoogle Scholar
  111. 111.
    Scopsi L, Larsson LI, Bastholm L, Nielsen MH (1986) Silver-enhanced colloidal gold probes as markers for scanning electron microscopy. Histochemistry 86:35–41CrossRefGoogle Scholar
  112. 112.
    Cho I-H, Seo S-M, Paek E-H, Paek S-H (2010) Immunogold-silver staining-on-a-chip biosensor based on cross-flow chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 878:271–277CrossRefGoogle Scholar
  113. 113.
    Horton JK, Swinburne S, O’Sullivan MJ (1991) A novel, rapid, single-step immunochromatographic procedure for the detection of mouse immunoglobulin. J Immunol Methods 140:131–134CrossRefGoogle Scholar
  114. 114.
    Smit PW, Elliott I, Peeling RW, Mabey D, Newton PN (2014) An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am J Trop Med Hyg 90:195–210CrossRefGoogle Scholar
  115. 115.
    Ghani AC, Burgess DH, Reynolds A, Rousseau C (2015) Expanding the role of diagnostic and prognostic tools for infectious diseases in resource-poor settings. Nature 528(7580):S50-S502Google Scholar
  116. 116.
    Curtis KA, Rudolph DL, Nejad I, Singleton J, Beddoe A, Weigl B, LaBarre P, Owen SM (2012) Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS One 7:e31432CrossRefGoogle Scholar
  117. 117.
    Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10:970–1003CrossRefGoogle Scholar
  118. 118.
    Gan W, Zhuang B, Zhang P, Han J, Li C-X, Liu P (2014) A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14:3719–3728CrossRefGoogle Scholar
  119. 119.
    Linnes JC, Fan A, Rodriguez NM, Lemieux B, Kong H, Klapperich CM (2014) Paper-based molecular diagnostic for chlamydia trachomatis. RSC Adv 4:42245–42251CrossRefGoogle Scholar
  120. 120.
    Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486CrossRefGoogle Scholar
  121. 121.
    Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92CrossRefGoogle Scholar
  122. 122.
    Houde A, Leblanc D, Poitras E, Ward P, Brassard J, Simard C, Trottier Y-L (2006) Comparative evaluation of RT-PCR, nucleic acid sequence-based amplification (NASBA) and real-time RT-PCR for detection of noroviruses in faecal material. J Virol Methods 135:163–172CrossRefGoogle Scholar
  123. 123.
    Liu C, Geva E, Mauk M, Qiu X, Abrams WR, Malamud D, Curtis K, Owen SM, Bau HH (2011) An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136:2069–2076CrossRefGoogle Scholar
  124. 124.
    Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM (2015) Paper-based rna extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza a (H1N1) from clinical specimens. Anal Chem 87:7872–7879CrossRefGoogle Scholar
  125. 125.
    Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800CrossRefGoogle Scholar
  126. 126.
    Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204CrossRefGoogle Scholar
  127. 127.
    Mondal D, Ghosh P, Khan MAA, Hossain F, Böhlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El Wahed A (2016) Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors 9:281CrossRefGoogle Scholar
  128. 128.
    Renner LD, Zan J, Hu LI, Martinez M, Resto PJ, Siegel AC, Torres C, Hall SB, Slezak TR, Nguyen TH, Weibel DB (2017) Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform. Appl Environ Microbiol 83:e02449–e02416CrossRefGoogle Scholar
  129. 129.
    Teoh B-T, Sam S-S, Tan K-K, Danlami MB, Shu M-H, Johari J, Hooi P-S, Brooks D, Piepenburg O, Nentwich O, Wilder-Smith A, Franco L, Tenorio A, AbuBakar S (2015) Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J Clin Microbiol 53:830–837CrossRefGoogle Scholar
  130. 130.
    Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62:947–958CrossRefGoogle Scholar
  131. 131.
    Cordray MS, Richards-Kortum RR (2012) Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg 87:223–230CrossRefGoogle Scholar
  132. 132.
    Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939CrossRefGoogle Scholar
  133. 133.
    Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ (2014) Paper-based synthetic gene networks. Cell 159:940–954CrossRefGoogle Scholar
  134. 134.
    van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522CrossRefGoogle Scholar
  135. 135.
    Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A 112:14429–14435CrossRefGoogle Scholar
  136. 136.
    Ostrov N, Jimenez M, Billerbeck S, Brisbois J, Matragrano J, Ager A, Cornish VW (2017) A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci Adv 3:e1603221CrossRefGoogle Scholar
  137. 137.
  138. 138.
    IEA (2014) Africa Energy Outlook, a focus on energy prospects in sub-saharan Africa [WWW Document]. URL https://www.iea.org/publications/freepublications/. Accessed 7 June 2017
  139. 139.
    GMSA Intelligence (2017) GMSA Intelligence accesses June 2017 at https://www.gsmaintelligence.com
  140. 140.
    Ventures Africa (2015) 60% OF THE WORLD’S POPULATION WILL OWN A MOBILE PHONE BY 2020 accessed June 2017. http://venturesafrica.com/60-of-the-worlds-population-will-own-a-mobile-phone-by-2020/
  141. 141.
    World Bank (2017) Rapid Urbanization in Africa: Investing in the Development of Africa’s Cities [WWW Document]. World Bank. http://www.worldbank.org/en/news/feature/2017/05/02/rapid-urbanization-in-africa-investing-in-the-development-of-africas-cities. Accessed 7 June 2017
  142. 142.
    Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, Zhang X, Kline EC, Buser JR, Kumar S, Byrnes SA, Vermeulen NMJ, Scarr NK, Belousov Y, Mahoney W, Toley BJ, Ladd PD, Lutz BR, Yager P (2016) A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16:3777–3787CrossRefGoogle Scholar
  143. 143.
    Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144CrossRefGoogle Scholar
  144. 144.
    Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611CrossRefGoogle Scholar
  145. 145.
    Wang C-C, Hennek JW, Ainla A, Kumar AA, Lan W-J, Im J, Smith BS, Zhao M, Whitesides GM (2016) A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal Chem 88:6326–6333CrossRefGoogle Scholar
  146. 146.
    Zhou G, Mao X, Juncker D (2012) Immunochromatographic assay on thread. Anal Chem 84:7736–7743CrossRefGoogle Scholar
  147. 147.
    Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem (Palo Alto, Calif) 5:413–440CrossRefGoogle Scholar
  148. 148.
    Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315CrossRefGoogle Scholar
  149. 149.
    Mousa NA, Jebrail MJ, Yang H, Abdelgawad M, Metalnikov P, Chen J, Wheeler AR, Casper RF (2009) Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med 1:1ra2CrossRefGoogle Scholar
  150. 150.
    Ng AHC, Lee M, Choi K, Fischer AT, Robinson JM, Wheeler AR (2015) Digital microfluidic platform for the detection of rubella infection and immunity: a proof of concept. Clin Chem 61:420–429CrossRefGoogle Scholar
  151. 151.
    Fobel R, Kirby AE, Ng AHC, Farnood RR, Wheeler AR (2014) Paper microfluidics goes digital. Adv Mater 26:2838–2843CrossRefGoogle Scholar
  152. 152.
    Dixon C, Ng AHC, Fobel R, Miltenburg MB, Wheeler AR (2016) An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab Chip 16:4560–4568CrossRefGoogle Scholar
  153. 153.
    Fobel R, Fobel C, Wheeler AR (2013) DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett 102:193513CrossRefGoogle Scholar
  154. 154.
    Güder F, Ainla A, Redston J, Mosadegh B, Glavan A, Martin TJ, Whitesides GM (2016) Paper-based electrical respiration sensor. Angew Chem Int Ed Engl 55:5727–5732CrossRefGoogle Scholar
  155. 155.
    Conrad CC, Hilchey KG (2011) A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ Monit Assess 176:273–291CrossRefGoogle Scholar
  156. 156.
    Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, Bloch J-F, Whitesides GM (2016) Electrically activated paper actuators. Adv Funct Mater 26:2446–2453CrossRefGoogle Scholar
  157. 157.
    Safavieh R, Juncker D (2013) Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip 13:4180–4189CrossRefGoogle Scholar
  158. 158.
    Jenum S, Dhanasekaran S, Lodha R, Mukherjee A, Saini DK, Singh S, Singh V, Medigeshi G, Haks MC, Ottenhoff THM, Doherty TM, Kabra SK, Ritz C, Grewal HMS (2016) Approaching a diagnostic point-of-care test for pediatric tuberculosis through evaluation of immune biomarkers across the clinical disease spectrum. Sci Rep 6:18520CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada

Personalised recommendations