Advertisement

Critical Components and Innovations in Paper-Based Analytical Devices

  • Robert B. Channon
  • Monpichar Srisa-Art
  • Katherine Boehle
  • Charles HenryEmail author
Chapter

Abstract

Despite a long history as an analytical tool, paper has come into significant academic and industrial focus over the last ∼10 years. This resurgence coincided with the seminal work by Whitesides group in 2007 on photoresist patterning of paper to create well-defined microfluidic channels [1]. The exponential growth can in large part be linked to key innovations, which have taken paper-based analytical devices from a niche apparatus in a handful analytical labs to a powerful tool used across a variety of disciplines around the world. Here, we outline some of the key advances and their impact.

References

  1. 1.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  2. 2.
    Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595CrossRefGoogle Scholar
  3. 3.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41CrossRefGoogle Scholar
  4. 4.
    Channon RB, Nguyen M, Scorzelli A, Henry E, Volckens J, Dandy D, Henry C (2018) Rapid flow in multilayer microfluidic paper-based analytical devices. Lab Chip 18:793–802CrossRefGoogle Scholar
  5. 5.
    Cate DM, Noblitt SD, Volckens J, Henry CS (2015) Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:2808–2818CrossRefGoogle Scholar
  6. 6.
    Singer JM, Plotz CM (1956) The latex fixation test. Am J Med 21:888–892CrossRefGoogle Scholar
  7. 7.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283CrossRefGoogle Scholar
  8. 8.
    Mendez S, Fenton EM, Gallegos GR, Petsev DN, Sibbett SS, Stone HA, Zhang Y, López GP (2010) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26:1380–1385CrossRefGoogle Scholar
  9. 9.
    Darcy H (1856) Les fontainespubliques de la ville de Dijon : exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau. Victor Dalmont, Paris, p 647Google Scholar
  10. 10.
    Camplisson CK, Schilling KM, Pedrotti WL, Stone HA, Martinez AW (2015) Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15:4461–4466CrossRefGoogle Scholar
  11. 11.
    Hong S, Kim W (2015) Dynamics of water imbibition through paper channels with wax boundaries. Microfluid Nanofluid 19:845–853CrossRefGoogle Scholar
  12. 12.
    Larich VG (1962) Physicochemical hydrodynamics, Prentice-Hall international series in the physical and chemical engineering sciences. Prentice-Hall, Englewood Cliffs, NJ, p 700Google Scholar
  13. 13.
    Renault C, Anderson MJ, Crooks RM (2014) Electrochemistry in hollow-channel paper analytical devices. J Am Chem Soc 136:4616–4623CrossRefGoogle Scholar
  14. 14.
    Verma MS, Tsaloglou M-N, Sisley T, Christodouleas D, Chen A, Milette J, Whitesides GM (2018) Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron 99:77–84CrossRefGoogle Scholar
  15. 15.
    Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659CrossRefGoogle Scholar
  16. 16.
    Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Bohringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:174–181CrossRefGoogle Scholar
  17. 17.
    Cai L, Zhong M, Li H, Xu C, Yuan B (2015) Defining microchannels and valves on a hydrophobic paper by low-cost inkjet printing of aqueous or weak organic solutions. Biomicrofluidics 9:046503CrossRefGoogle Scholar
  18. 18.
    Koo CKW, He F, Nugen SR (2013) An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst 138:4998–5004CrossRefGoogle Scholar
  19. 19.
    Li X, Zwanenburg P, Liu X (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip 13:2609–2614CrossRefGoogle Scholar
  20. 20.
    Giokas DL, Tsogas GZ, Vlessidis AG (2014) Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal Chem 86:6202–6207CrossRefGoogle Scholar
  21. 21.
    Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E (2013) Tunable-delay shunts for paper microfluidic devices. Anal Chem 85:11545–11552CrossRefGoogle Scholar
  22. 22.
    Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847CrossRefGoogle Scholar
  23. 23.
    Li CG, Joung H-A, Noh H, Song M-B, Kim M-G, Jung H (2015) One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15:3286–3292CrossRefGoogle Scholar
  24. 24.
    Liu H, Li X, Crooks RM (2013) Paper-based SlipPAD for high-throughput chemical sensing. Anal Chem 85:4263–4267CrossRefGoogle Scholar
  25. 25.
    Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S, Ongagna S, Abrams WR, Malamud D, Corstjens PLAM, Bau HH (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12:705–719CrossRefGoogle Scholar
  26. 26.
    Martinez AW, Phillips ST, Nie Z, Cheng C-M, Carrilho E, Wiley BJ, Whitesides GM (2010) Programmable diagnostic devices made from paper and tape. Lab Chip 10:2499–2504CrossRefGoogle Scholar
  27. 27.
    Niedl RR, Beta C (2015) Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452–2459CrossRefGoogle Scholar
  28. 28.
    Houghtaling J, Liang T, Thiessen G, Fu E (2013) Dissolvable bridges for manipulating fluid volumes in paper networks. Anal Chem 85:11201–11204CrossRefGoogle Scholar
  29. 29.
    Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135CrossRefGoogle Scholar
  30. 30.
    Nguyen MP, Meredith NA, Kelly SP, Henry CS (2018) Design considerations for reducing sample loss in microfluidic paper-based analytical devices. Analytica Chimica Acta 1017: 20–25CrossRefGoogle Scholar
  31. 31.
    Dharmaraja S, Lafleur L, Byrnes S, Kauffman P, Buser J, Toley B, Fu E, Yager P, Lutz B (2013) Programming paper networks for point of care diagnostics. SPIE MOEMS-MEMS 8615:11Google Scholar
  32. 32.
    Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579CrossRefGoogle Scholar
  33. 33.
    Fu E, Downs C (2017) Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 17:614–628CrossRefGoogle Scholar
  34. 34.
    Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS (2014) Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal Chem 86:3555–3562CrossRefGoogle Scholar
  35. 35.
    Meredith NA, Quinn C, Cate DM, Reilly TH 3rd, Volckens J, Henry CS (2016) Paper-based analytical devices for environmental analysis. Analyst 141:1874–1887CrossRefGoogle Scholar
  36. 36.
    Meredith NA, Volckens J, Henry CS (2017) Paper-based microfluidics for experimental design: screening masking agents for simultaneous determination of Mn(ii) and Co(ii). Anal Methods 9:534–540CrossRefGoogle Scholar
  37. 37.
    Bhamla MS, Benson B, Chai C, Katsikis G, Johri A, Prakash M (2017) Hand-powered ultralow-cost paper centrifuge. Nat Biomed Eng 1:0009CrossRefGoogle Scholar
  38. 38.
    Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280CrossRefGoogle Scholar
  39. 39.
    Samad Khan M, Thouas G, Shen W, Whyte G, Garnier G (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82:4158–4164CrossRefGoogle Scholar
  40. 40.
    Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398CrossRefGoogle Scholar
  41. 41.
    He J, Huang M, Wang D, Zhang Z, Li G (2014) Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal 101:84–101CrossRefGoogle Scholar
  42. 42.
    Zakir Hossain SM, Ozimok C, Sicard C, Aguirre SD, Monsur Ali M, Li Y, Brennan JD (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576CrossRefGoogle Scholar
  43. 43.
    Srisa-Art M, Boehle KE, Geiss BJ, Henry CS (2018) Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem 90:1035–1043CrossRefGoogle Scholar
  44. 44.
    Channon RB, Yang Y, Feibelman KM, Geiss BJ, Dandy DS, Henry CS (2018) Sensitive virus particle detection using an electrochemical paper-based analytical device. ACS Sens. SubmittedGoogle Scholar
  45. 45.
    Hong S, Kwak R, Kim W (2016) Paper-based flow fractionation system applicable to preconcentration and field-flow separation. Anal Chem 88:1682–1687CrossRefGoogle Scholar
  46. 46.
    Gong MM, Nosrati R, San Gabriel MC, Zini A, Sinton D (2015) Direct DNA analysis with paper-based ion concentration polarization. J Am Chem Soc 137:13913–13919CrossRefGoogle Scholar
  47. 47.
    Ma B, Xie S-F, Liu L, Fang F, Wu Z-Y (2017) Two orders of magnitude electrokinetic stacking of proteins in one minute on a simple paper fluidic channel. Anal Methods 9:2703–2709CrossRefGoogle Scholar
  48. 48.
    Jayawardane BM, Coo Ld, Cattrall RW, Kolev SD (2013) The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II). Anal Chim Acta 803:106–112CrossRefGoogle Scholar
  49. 49.
    Zhu Y, Zhang L, Yang L (2015) Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater Res Bull 63:199–204CrossRefGoogle Scholar
  50. 50.
    Adkins J, Boehle K, Henry C (2015) Electrochemical paper-based microfluidic devices. Electrophoresis 36:1811–1824CrossRefGoogle Scholar
  51. 51.
    Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, Srisa-Art M, Henry CS (2016) Electrochemistry on paper-based analytical devices. Electroanalysis 28:1420–1436CrossRefGoogle Scholar
  52. 52.
    Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404CrossRefGoogle Scholar
  53. 53.
    Pratiwi R, Nguyen MP, Ibrahim S, Yoshioka N, Henry CS, Tjahjono DH (2017) A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. Talanta 174:493–499CrossRefGoogle Scholar
  54. 54.
    Gomes HI, Sales MG (2015) Development of paper-based color test-strip for drug detection in aquatic environment: Application to oxytetracycline. Biosens Bioelectron 65:54–61CrossRefGoogle Scholar
  55. 55.
    Silva TI, Moreira FT, Truta LA, Sales MG (2012) Novel optical PVC probes for on-site detection/determination of fluoroquinolones in a solid/liquid interface: application to the determination of Norfloxacin in aquaculture water. Biosens Bioelectron 36:199–206CrossRefGoogle Scholar
  56. 56.
    Li X, Scida K, Crooks RM (2015) Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem 87:9009–9015CrossRefGoogle Scholar
  57. 57.
    Ratnarathorn N, Chailapakul O, Henry CS, Dungchai W (2012) Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta 99:552–557CrossRefGoogle Scholar
  58. 58.
    Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849CrossRefGoogle Scholar
  59. 59.
    Dungchai W, Sameenoi Y, Chailapakul O, Volckens J, Henry CS (2013) Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Analyst 138:6766–6773CrossRefGoogle Scholar
  60. 60.
    Piyanan T, Athipornchai A, Henry CS, Sameenoi Y (2018) An instrument-free detection of antioxidant activity using paper-based analytical devices coated with nanoceria. Anal Sci 34:97–102CrossRefGoogle Scholar
  61. 61.
    Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS (2017) Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal Chem 89:5428–5435CrossRefGoogle Scholar
  62. 62.
    Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, Xu F (2013) Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 13:4352–4357CrossRefGoogle Scholar
  63. 63.
    Wang Y, Ping J, Ye Z, Wu J, Ying Y (2013) Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157:H7. Biosens Bioelectron 49:492–498CrossRefGoogle Scholar
  64. 64.
    Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140:1817–1821CrossRefGoogle Scholar
  65. 65.
    Evans E, Gabriel EF, Benavidez TE, Tomazelli Coltro WK, Garcia CD (2014) Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139:5560–5567CrossRefGoogle Scholar
  66. 66.
    Silva TG, de Araujo WR, Munoz RA, Richter EM, Santana MH, Coltro WK, Paixao TR (2016) Simple and sensitive paper-based device coupling electrochemical sample pretreatment and colorimetric detection. Anal Chem 88:5145–5151CrossRefGoogle Scholar
  67. 67.
    Pesenti A, Taudte RV, McCord B, Doble P, Roux C, Blanes L (2014) Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives. Anal Chem 86:4707–4714CrossRefGoogle Scholar
  68. 68.
    Peters KL, Corbin I, Kaufman LM, Zreibe K, Blanes L, McCord BR (2015) Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal Methods 7:63–70CrossRefGoogle Scholar
  69. 69.
    Musile G, Wang L, Bottoms J, Tagliaro F, McCord B (2015) The development of paper microfluidic devices for presumptive drug detection. Anal Methods 7:8025–8033CrossRefGoogle Scholar
  70. 70.
    Cardoso TMG, Channon RB, Adkins JA, Talhavini M, Coltro WKT, Henry CS (2017) A paper-based colorimetric spot test for the identification of adulterated whiskeys. Chem Commun (Camb) 53:7957–7960CrossRefGoogle Scholar
  71. 71.
    Liu S, Su W, Ding X (2016) A review on microfluidic paper-based analytical devices for glucose detection. Sensors (Basel) 16(12)Google Scholar
  72. 72.
    Gabriel EF, Garcia PT, Cardoso TM, Lopes FM, Martins FT, Coltro WK (2016) Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 141:4749–4756CrossRefGoogle Scholar
  73. 73.
    Chen X, Chen J, Wang F, Xiang X, Luo M, Ji X, He Z (2012) Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens Bioelectron 35:363–368CrossRefGoogle Scholar
  74. 74.
    Talalak K, Noiphung J, Songjaroen T, Chailapakul O, Laiwattanapaisal W (2015) A facile low-cost enzymatic paper-based assay for the determination of urine creatinine. Talanta 144:915–921CrossRefGoogle Scholar
  75. 75.
    Robinson R, Wong L, Monnat R, Fu E (2016) Development of a whole blood paper-based device for phenylalanine detection in the context of PKU therapy monitoring. Micromachines 7:28CrossRefGoogle Scholar
  76. 76.
    Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674:227–233CrossRefGoogle Scholar
  77. 77.
    Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, Daigger GT, Pelton R, Brennan JD, Filipe CD (2015) Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res 70:360–369CrossRefGoogle Scholar
  78. 78.
    Zakir Hossain SM, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064CrossRefGoogle Scholar
  79. 79.
    Evans E, Gabriel EF, Coltro WK, Garcia CD (2014) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139:2127–2132CrossRefGoogle Scholar
  80. 80.
    Nery EW, Kubota LT (2016) Evaluation of enzyme immobilization methods for paper-based devices—a glucose oxidase study. J Pharm Biomed Anal 117:551–559CrossRefGoogle Scholar
  81. 81.
    Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogen. Anal Chem 84:2900–2907CrossRefGoogle Scholar
  82. 82.
    Bisha B, Adkins JA, Jokerst JC, Chandler JC, Perez-Mendez A, Coleman SM, Sbodio AO, Suslow TV, Danyluk MD, Henry CS, Goodridge LD (2014) Colorimetric paper-based detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes of agricultural water. J Vis Exp (88)Google Scholar
  83. 83.
    Adkins JA, Boehle K, Friend C, Chamberlain B, Bisha B, Henry CS (2017) Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal Chem 89:3613–3621CrossRefGoogle Scholar
  84. 84.
    Boehle KE, Gilliand J, Wheeldon CR, Holder A, Adkins JA, Geiss BJ, Ryan EP, Henry CS (2017) Utilizing paper-based devices for antimicrobial-resistant bacteria detection. Angew Chem Int Ed Engl 56:6886–6890CrossRefGoogle Scholar
  85. 85.
    Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, Wong VL, Pohlmann RA, Ryan US, Whitesides GM (2012) A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med 4:152ra129CrossRefGoogle Scholar
  86. 86.
    Kannan B, Jahanshahi-Anbuhi S, Pelton RH, Li Y, Filipe CD, Brennan JD (2015) Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents. Anal Chem 87:9288–9293CrossRefGoogle Scholar
  87. 87.
    Nosrati R, Gong MM, San Gabriel MC, Pedraza CE, Zini A, Sinton D (2016) Paper-based quantification of male fertility potential. Clin Chem 62:458–465CrossRefGoogle Scholar
  88. 88.
    Yen TH, Chen KH, Hsu MY, Fan ST, Huang YF, Chang CL, Wang YP, Cheng CM (2015) Reprint of ‘Evaluating organophosphate poisoning in human serum with paper’. Talanta 145:66–72CrossRefGoogle Scholar
  89. 89.
    Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582CrossRefGoogle Scholar
  90. 90.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 49:4771–4774CrossRefGoogle Scholar
  91. 91.
    Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218CrossRefGoogle Scholar
  92. 92.
    Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA (2013) Optimization of a paper-based ELISA for human performance biomarker. Anal Chem 85:11634–11642CrossRefGoogle Scholar
  93. 93.
    Sun X, Li B, Tian C, Yu F, Zhou N, Zhan Y, Chen L (2018) Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal Chim Acta 1007:33–39CrossRefGoogle Scholar
  94. 94.
    Mu X, Zhang L, Chang S, Cui W, Zheng Z (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86:5338–5344CrossRefGoogle Scholar
  95. 95.
    Khan MS, Pande T, van de Ven TG (2015) Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA. Colloids Surf B Biointerfaces 132:264–270CrossRefGoogle Scholar
  96. 96.
    Shih CM, Chang CL, Hsu MY, Lin JY, Kuan CM, Wang HK, Huang CT, Chung MC, Huang KC, Hsu CE, Wang CY, Shen YC, Cheng CM (2015) Paper-based ELISA to rapidly detect Escherichia coli. Talanta 145:2–5CrossRefGoogle Scholar
  97. 97.
    Ramachandran S, Fu E, Lutz B, Yager P (2014) Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 139:1456–1462CrossRefGoogle Scholar
  98. 98.
    Schochetman G, Ou C, Jones WK (1988) Polymerase chain reaction. J Infect Dis 158:1154–1157CrossRefGoogle Scholar
  99. 99.
    Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, Zhang X, Kline EC, Buser JR, Kumar S, Byrnes SA, Vermeulen NM, Scarr NK, Belousov Y, Mahoney W, Toley BJ, Ladd PD, Lutz BR, Yager P (2016) A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16:3777–3787CrossRefGoogle Scholar
  100. 100.
    Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM (2015) Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of Influenza A (H1N1) from clinical specimens. Anal Chem 87:7872–7879CrossRefGoogle Scholar
  101. 101.
    Rodriguez NM, Wong WS, Liu L, Dewar R, Klapperich CM (2016) A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16:753–763CrossRefGoogle Scholar
  102. 102.
    Rohrman BA, Richards-Kortum RR (2012) A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12:3082–3088CrossRefGoogle Scholar
  103. 103.
    Huang S, Do J, Mahalanabis M, Fan A, Zhao L, Jepeal L, Singh SK, Klapperich CM (2013) Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. PLoS One 8:e60059CrossRefGoogle Scholar
  104. 104.
    Linnes JC, Rodriguez NM, Liu L, Klapperich CM (2016) Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices 18:30CrossRefGoogle Scholar
  105. 105.
    Teengam P, Siangproh W, Tuantranont A, Henry CS, Vilaivan T, Chailapakul O (2017) Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Anal Chim Acta 952:32–40CrossRefGoogle Scholar
  106. 106.
    Yildiz UH, Alagappan P, Liedberg B (2013) Naked eye detection of lung cancer associated miRNA by paper based biosensing platform. Anal Chem 85:820–824CrossRefGoogle Scholar
  107. 107.
    Noor MO, Krull UJ (2014) Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86:10331–10339CrossRefGoogle Scholar
  108. 108.
    Capitán-Vallvey LF, López-Ruiz N, Martínez-Olmos A, Erenas MM, Palma AJ (2015) Recent developments in computer vision-based analytical chemistry: A tutorial review. Anal Chim Acta 899:23–56CrossRefGoogle Scholar
  109. 109.
    Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86:9554–9562CrossRefGoogle Scholar
  110. 110.
    Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243CrossRefGoogle Scholar
  111. 111.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707CrossRefGoogle Scholar
  112. 112.
    Klasner SA, Price AK, Hoeman KW, Wilson RS, Bell KJ, Culbertson CT (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397:1821–1829CrossRefGoogle Scholar
  113. 113.
    Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826CrossRefGoogle Scholar
  114. 114.
    Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal Chem 79:114–126CrossRefGoogle Scholar
  115. 115.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483CrossRefGoogle Scholar
  116. 116.
    Maattanen A, Ihalainen P, Pulkkinen P, Wang SX, Tenhu H, Peltonen J (2012) Inkjet-printed gold electrodes on paper: characterization and functionalization. ACS Appl Mater Interfaces 4:955–964CrossRefGoogle Scholar
  117. 117.
    Hu CG, Bai XY, Wang YK, Jin W, Zhang X, Hu SS (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750CrossRefGoogle Scholar
  118. 118.
    Dossi N, Toniolo R, Piccin E, Susmel S, Pizzariello A, Bontempelli G (2013) Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25:2515–2522CrossRefGoogle Scholar
  119. 119.
    Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34:2085–2091CrossRefGoogle Scholar
  120. 120.
    Santhiago M, Kubota LT (2013) A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens Actuat B Chem 177:224–230CrossRefGoogle Scholar
  121. 121.
    Dossi N, Toniolo R, Impellizzieri F, Bontempelli G (2014) Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. J Electroanal Chem 722:90–94CrossRefGoogle Scholar
  122. 122.
    Fosdick SE, Anderson MJ, Renault C, DeGregory PR, Loussaert JA, Crooks RM (2014) Wire, mesh, and fiber electrodes for paper-based electroanalytical devices. Anal Chem 86:3659–3666CrossRefGoogle Scholar
  123. 123.
    Adkins JA, Henry CS (2015) Electrochemical detection in paper-based analytical devices using microwire electrodes. Anal Chim Acta 891:247–254CrossRefGoogle Scholar
  124. 124.
    Shiroma LY, Santhiago M, Gobbi AL, Kubota LT (2012) Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal Chim Acta 725:44–50CrossRefGoogle Scholar
  125. 125.
    Siegel AC, Phillips ST, Wiley BJ, Whitesides GM (2009) Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9:2775–2781CrossRefGoogle Scholar
  126. 126.
    Carvalhal RF, Kfouri MS, Piazetta MHD, Gobbi AL, Kubota LT (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82:1162–1165CrossRefGoogle Scholar
  127. 127.
    Lankelma J, Nie ZH, Carrilho E, Whitesides GM (2012) Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem 84:4147–4152CrossRefGoogle Scholar
  128. 128.
    Jagadeesan KK, Kumar S, Sumana G (2012) Application of conducting paper for selective detection of troponin. Electrochem Commun 20:71–74CrossRefGoogle Scholar
  129. 129.
    Ge SG, Zhang LN, Zhang Y, Liu HY, Huang JD, Yan M, Yu JH (2015) Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing. Talanta 145:12–19CrossRefGoogle Scholar
  130. 130.
    Ge SG, Zhang Y, Zhang L, Liang LL, Liu HY, Yan M, Huang JD, Yu JH (2015) Ultrasensitive electrochemical cancer cells sensor based on trimetallic dendritic Au@PtPd nanoparticles for signal amplification on lab-on-paper device. Sens Actuat B Chem 220:665–672CrossRefGoogle Scholar
  131. 131.
    Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86:6166–6170CrossRefGoogle Scholar
  132. 132.
    Ge L, Wang SM, Yu JH, Li NQ, Ge SG, Yan M (2013) Molecularly imprinted polymer grafted porous Au-paper electrode for an microfluidic electro-analytical origami device. Adv Funct Mater 23:3115–3123CrossRefGoogle Scholar
  133. 133.
    Wang PP, Sun GQ, Ge L, Ge SG, Yu JH, Yan M (2013) Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode. Analyst 138:4802–4811CrossRefGoogle Scholar
  134. 134.
    Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z, Ramírez J, Chan G, Wang J (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85:6553–6560CrossRefGoogle Scholar
  135. 135.
    Cinti S, Arduini F, Carbone M, Sansone L, Cacciotti I, Moscone D, Palleschi G (2015) Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 27:2230–2238CrossRefGoogle Scholar
  136. 136.
    Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19CrossRefGoogle Scholar
  137. 137.
    Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651CrossRefGoogle Scholar
  138. 138.
    Michopoulos A, Kouloumpis A, Gournis D, Prodromidis MI (2014) Performance of layer-by-layer deposited low dimensional building blocks of graphene-Prussian blue onto graphite screen-printed electrodes as sensors for hydrogen peroxide. Electrochim Acta 146:477–484CrossRefGoogle Scholar
  139. 139.
    Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens Bioelectron 56:77–82CrossRefGoogle Scholar
  140. 140.
    Liana DD, Raguse B, Wieczorek L, Baxter GR, Chuah K, Gooding JJ, Chow E (2013) Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv 3:8683–8691CrossRefGoogle Scholar
  141. 141.
    Pedroza RHP, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2016) Integration of commercial screen-printed electrodes into a voltammetric electronic tongue for the analysis of aminothiols. Electroanalysis 28:1570–1577CrossRefGoogle Scholar
  142. 142.
    Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82:1727–1732CrossRefGoogle Scholar
  143. 143.
    Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48CrossRefGoogle Scholar
  144. 144.
    Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45CrossRefGoogle Scholar
  145. 145.
    Lisak G, Cui J, Bobacka J (2015) Paper-based microfluidic sampling for potentiometric determination of ions. Sens Actuators B Chim 207:933–939CrossRefGoogle Scholar
  146. 146.
    Lan WJ, Zou XU, Hamedi MM, Hu JB, Parolo C, Maxwell EJ, Buhlmann P, Whitesides GM (2014) Paper-based potentiometric ion sensing. Anal Chem 86:9548–9553CrossRefGoogle Scholar
  147. 147.
    Wang Y, Liu H, Wang P, Yu J, Ge S, Yan M (2015) Chemiluminescence excited photoelectrochemical competitive immunosensing lab-on-paper device using an integrated paper supercapacitor for signal amplication. Sens Actuators B Chim 208:546–553CrossRefGoogle Scholar
  148. 148.
    Wu L, Ma C, Zheng X, Liu H, Yu J (2015) Paper-based electrochemiluminescence origami device for protein detection using assembled cascade DNA–carbon dots nanotags based on rolling circle amplication. Biosens Bioelectron 68:413–420CrossRefGoogle Scholar
  149. 149.
    Zhang Y, Zuo P, Ye B-C (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19CrossRefGoogle Scholar
  150. 150.
    Qu L-L, Li D-W, Xue J-Q, Zhai W-L, Fossey JS, Long Y-T (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881CrossRefGoogle Scholar
  151. 151.
    Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed 49:877–880CrossRefGoogle Scholar
  152. 152.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597CrossRefGoogle Scholar
  153. 153.
    Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81:8447–8452CrossRefGoogle Scholar
  154. 154.
    Lee D-S, Jeon BG, Ihm C, Park J-K, Jung MY (2011) Size limits the formation of liquid jets during bubble bursting. Lab Chip 11:120–126CrossRefGoogle Scholar
  155. 155.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163–3169CrossRefGoogle Scholar
  156. 156.
    Zhang L, Yang W, Yang Y, Liu H, Gu Z (2015) Smartphone-based point-of-care testing of salivary [small alpha]-amylase for personal psychological measurement. Analyst 140:7399–7406CrossRefGoogle Scholar
  157. 157.
    Elizalde E, Urteaga R, Berli CLA (2015) Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15:2173–2180CrossRefGoogle Scholar
  158. 158.
    Toley BJ, Wang JA, Gupta M, Buser JR, Lafleur LK, Lutz BR, Fu E, Yager P (2015) A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:1432–1444CrossRefGoogle Scholar
  159. 159.
    Cunningham JC, Scida K, Kogan MR, Wang B, Ellington AD, Crooks RM (2015) Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip 15:3707–3715CrossRefGoogle Scholar
  160. 160.
    Adkins JA, Noviana E, Henry CS (2016) Development of a quasi-steady flow electrochemical paper-based analytical device. Anal Chem 88:10639–10647CrossRefGoogle Scholar
  161. 161.
    Chandra Sekar N, Mousavi Shaegh SA, Ng SH, Ge L, Tan SN (2014) A paper-based amperometric glucose biosensor developed with Prussian blue-modified screen-printed electrodes. Sens Actuat B Chem 204:414–420CrossRefGoogle Scholar
  162. 162.
    Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–2686CrossRefGoogle Scholar
  163. 163.
    Oncescu V, O’Dell D, Erickson D (2013) Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–3238CrossRefGoogle Scholar
  164. 164.
    Salles MO, Meloni GN, de Araujo WR, Paixao TRLC (2014) Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods 6:2047–2052CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert B. Channon
    • 1
  • Monpichar Srisa-Art
    • 2
  • Katherine Boehle
    • 1
  • Charles Henry
    • 1
    Email author
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA
  2. 2.Department of ChemistryChulalongkorn UniversityBangkokThailand

Personalised recommendations