Advertisement

The Role of Paper Chemistry and Paper Manufacture in the Design of Paper-Based Diagnostics

  • Samuel Schabel
  • Markus BiesalskiEmail author
Chapter

Abstract

Paper has been used intensively for thousands of years, and it is a material made from renewable resources. It consists of a highly porous, bendable and foldable, flat structure of randomly arranged and connected fiber-like basic building blocks. The possibility to transport fluids without pumps and sophisticated dosing systems is attractive, and microfluidic paper for diagnostic applications has gained increasing interest, in particular, throughout the last decade. Although a number of interesting demonstrator devices for such easy-to-use diagnostic systems have been reported, still only a very limited number of devices made it into the market. The latter is mainly caused by the geometric and chemical complexity of the paper material itself. Whereas chemical functionalization (e.g., for defining hydrophobic barriers for spatially resolved fluid transport) is well advanced and will be covered by other groups in this book, understanding the impact of the paper material itself on the performance of paper-based diagnostic devices is still a challenge. Yet, only if we understand the latter from a fundamental point of view, more advanced and successful paper materials for such applications may become available. This book chapter outlines principles of paper manufacture; it thereafter reviews important paper chemistry aspects, and finally highlights recent developments on how engineering the morphology and chemistry of paper sheets gives us more insight into fundamentals on the role of the material itself in paper-based diagnostic applications.

References

  1. 1.
    Holik H (2013) Handbook of paper and board. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  2. 2.
    CEPI key statistics (2016) www.cepi.org
  3. 3.
  4. 4.
    Sixta H (ed) (2006) Handbook of pulp. Wiley-VCH Verlag, WeinheimGoogle Scholar
  5. 5.
    Gullichsen J, Paulapuro H (2000) Papermaking science and technology, chemical pulping, book 6B. Fapet Oy, Jyväskylä Gummerus PrintingGoogle Scholar
  6. 6.
    Gullichsen J, Paulapuro H (1999) Papermaking science and technology, mechanical pulping, book 5. Fapet Oy, Jyväskylä Gummerus PrintingGoogle Scholar
  7. 7.
    Gullichsen J, Paulapuro H (2000) Papermaking science and technology, recycled fiber and deinking, book 7. Fapet Oy, Jyväskylä Gummerus PrintingGoogle Scholar
  8. 8.
  9. 9.
    Niskanen K (2011) Mechanics of paper products. De Gruyter, BerlinGoogle Scholar
  10. 10.
    Kleemann S et al (2008) Chemical additives for the production of pulp & paper. Deutscher Fachverlag, Frankfurt am MainGoogle Scholar
  11. 11.
    Thummer R, Belle J (2008) Chemical additives for the production of pulp & paper. Deutscher Fachverlag, Frankfurt am MainGoogle Scholar
  12. 12.
    Alen R (2007) Papermaking chemistry, book 4. Fapet Oy, Jyväskylä., Gummerus PrintingGoogle Scholar
  13. 13.
    Auhorn WJ, Niemelä K (2006) Process chemicals for the production of chemical pulp. Wochenbl Pap 134(22):1302Google Scholar
  14. 14.
    Kuenzel U, Le PC (2008) In: Kleemann S et al (eds) Chemical additives for the production of pulp & paper. Deutscher Fachverlag, Frankfurt am MainGoogle Scholar
  15. 15.
    Pelzer R (2008) In: Kleemann S et al (eds) Chemical additives for the production of pulp & paper. Deutscher Fachverlag, Frankfurt am MainGoogle Scholar
  16. 16.
    Auhorn WJ (2008) In: Kleemann S et al (eds) Chemical additives for the production of pulp & paper. Deutscher Fachverlag, Frankfurt am MainGoogle Scholar
  17. 17.
    Hubbe MA et al (2007) What happens to cellulosic fibers during papermaking and recycling? A review. Bioresources 2(4):739–788Google Scholar
  18. 18.
    Belle J, Odermatt J (2016) Initial wet web strength of paper. Cellulose 23:2249–2272CrossRefGoogle Scholar
  19. 19.
    Jocher M et al (2015) Enhancing the wet strength of lignocellulosic fibrous networks using photo-crosslinkable polymers. Cellulose 22(1):581–591CrossRefGoogle Scholar
  20. 20.
    Janko M et al (2015) Cross-linking cellulosic fibers with photoreactive polymers: visualization with confocal Raman and fluorescence microscopy. Biomacromolecules 16:2179–2187CrossRefGoogle Scholar
  21. 21.
    Böhm A et al (2013) Photo-attaching functional polymers to cellulose fibers for the design of chemically modified paper. Cellulose 20(1):467–483CrossRefGoogle Scholar
  22. 22.
    Liana DD et al (2012) Recent advances in paper-based sensors. Sensors 12:11505CrossRefGoogle Scholar
  23. 23.
    Dungchai W et al (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826CrossRefGoogle Scholar
  24. 24.
    Wang J et al (2014) Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691–695CrossRefGoogle Scholar
  25. 25.
    Böhm A et al (2014) Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid Nanofluid 16:789–799CrossRefGoogle Scholar
  26. 26.
    Arena A et al (2010) Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens Actuators B Chem 145:488–494CrossRefGoogle Scholar
  27. 27.
    Lu Y et al (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82:329CrossRefGoogle Scholar
  28. 28.
    Fu E et al (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918CrossRefGoogle Scholar
  29. 29.
    Fu E et al (2011) Transport in two-dimensional paper networks. Microfluid Nanofluid 10:29CrossRefGoogle Scholar
  30. 30.
    Fenton EM et al (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124CrossRefGoogle Scholar
  31. 31.
    Cretich M et al (2010) Coating of nitrocellulose for colorimetric DNA microarrays. Anal Biochem 397:84CrossRefGoogle Scholar
  32. 32.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273CrossRefGoogle Scholar
  33. 33.
    McLiesh H et al (2015) Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing. Coll Surf B Biointerfaces 133:189–197CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Paper Technology and Mechanical Process EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute for Macromolecular Chemistry and Paper ChemistryTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations