Advertisement

Diffusion of Cosmic Rays in the Galaxy

  • Maurizio Spurio
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

The observed spectra of Cosmic Rays (CRs) depend on two basic processes: the propagation in the interstellar medium of our Galaxy, described in this chapter, and the acceleration in the astrophysical sources. Upon leaving the source regions, high-energy charged particles diffuse in the random galactic magnetic field that accounts for their high isotropy and relatively long confinement time. The galactic diffusion model explains the observations on energy spectra, composition, and anisotropy of CRs. It also provides a basis for the interpretation of radio, X-ray, and γ-ray measurements, since a continuous radiation with a non-thermal spectrum is produced during propagation by the energetic electrons, protons, and nuclei. As discussed in this chapter, relevant information on CR propagation arise from the measurements of the abundances of some particular nuclei: the so-called light elements Li, Be, and B. Light elements are mainly of secondary origin, i.e., produced as the result of interactions of heavier primary nuclei with interstellar matter. We use the observed ratio between light and medium elements to assess an analytic description of the CR propagation and a first-order estimate of their escape time from our Galaxy. Electrons, as the lightest stable-charged particles, are subject to additional energy loss mechanisms with respect to protons and nuclei. The presence of magnetic fields induces synchrotron emission, which produces intense electromagnetic radiation in the proximity of the electron accelerators. In addition, a diffuse emission is produced during electron propagation in the galactic disk. Therefore, severe limits on the electron energy spectrum and on the distance of CR electron sources can be derived.

References

  1. A. Aab et al. (The Pierre Auger Collaboration), Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 357, 1266 (2017). Also arXiv:1709.07321Google Scholar
  2. R. Abbasi et al., Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys. J. 746, 33 (2012)ADSCrossRefGoogle Scholar
  3. P. Abreu et al., Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory. Astropart. Phys. 34, 627–639 (2011). The results were updated at the ICRC 2013 (see: arxiv:1310.4620)
  4. F. Acero et al. (The Fermi-LAT Coll.). Development of the model of galactic interstellar emission for standard point-source analysis of Fermi large area telescope data. Astrophys. J. Suppl. 223(2), 26 (2016)Google Scholar
  5. M. Aglietta et al., Evolution of the cosmic-ray anisotropy above 1014 eV. Astrophys. J. Lett. 692(2), L130–L133 (2009)ADSCrossRefGoogle Scholar
  6. M. Aguilar et al. (AMS-02 Collaboration) Precision measurement of the boron to carbon flux ratio in CRs from 1.9 GV to 2.6 TV with the AMS on the ISS. Phys. Rev. Lett. 117, 231102 (2016)Google Scholar
  7. A. Albert et al. (ANTARES Collaboration). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Phys. Rev. D96, 062001 (2017)Google Scholar
  8. S. Bowman, Radiocarbon Dating (Interpreting the Past) (University of California Press, Berkeley, 1990). ISBN: 978-0520070370Google Scholar
  9. J. Candia, S. Mollerach, E. Roulet, Cosmic ray spectrum and anisotropies from the knee to the second knee. J. Cosmol. Astropart. Phys. 05, 003 (2003)ADSCrossRefGoogle Scholar
  10. J.J. Engelmann et al., Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI. Results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990)Google Scholar
  11. C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10, 018 (2008)ADSCrossRefGoogle Scholar
  12. M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The age of galactic cosmic rays derived. Astrophys. J. 217, 859–877 (1977)ADSCrossRefGoogle Scholar
  13. G. Ghisellini, Radiative Processes in High Energy Astrophysics. Springer Lecture Notes in Physics (Springer, Berlin, 2013). ISBN 978-3319006116CrossRefGoogle Scholar
  14. G. Guillian et al., Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the super-Kamiokande-I detector. Phys. Rev. D 75, 062003 (2007)ADSCrossRefGoogle Scholar
  15. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999). ISBN 978-0471309321zbMATHGoogle Scholar
  16. M. Kachelriess, Lecture Notes on High Energy Cosmic Rays (2008). arXiv:0801.4376
  17. R. Kissmann, PICARD: A novel code for the galactic cosmic ray propagation problem. Astropart. Phys. 55, 37 (2014). https://doi.org/10.1016/j.astropartphys.2014.02.002 ADSCrossRefGoogle Scholar
  18. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941); Reprinted on Proc. R. Soc. A 434, 9 (1991)ADSGoogle Scholar
  19. R.H. Kraichnan, Phys. Fluids 8, 1385 (1965)ADSCrossRefGoogle Scholar
  20. M.S. Longair, High Energy Astrophys, 3rd edn. (Cambridge University Press, Cambridge, 2011). ISBN 978-0521756181Google Scholar
  21. V. Mardia, P. Jupp, Directional Statistics (Wiley, New York, 1999). ISBN: 978-0471953333CrossRefGoogle Scholar
  22. D. Maurin, F. Donato, R. Taillet, P. Salati, Cosmic rays below Z= 30 in a diffusion model: new constraints on propagation parameters. Astrophys. J. 555, 585 (2001). https://doi.org/10.1086/321496 ADSCrossRefGoogle Scholar
  23. D. Maurin, F. Melot, R. Taillet. A database of charged cosmic rays. A&A 569, A32 (2014). arxiv:1302.5525ADSCrossRefGoogle Scholar
  24. A. Obermeier et al., The boron-to-carbon abundance ratio and galactic propagation of cosmic radiation. Astrophys. J. 752, 69 (2012)ADSCrossRefGoogle Scholar
  25. V. Ptuskin, Propagation of galactic cosmic rays. Astropart. Phys. 39–40, 44–51 (2012)ADSCrossRefGoogle Scholar
  26. J. Reimer Paula, INTCAL04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46(3), 1029–1058 (2004)CrossRefGoogle Scholar
  27. R. Silberberg, C.H. Tsao, Spallation processes and nuclear interaction products of cosmic rays. Phys. Rep. 191, 351–408 (1990)ADSCrossRefGoogle Scholar
  28. A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the Galaxy. Astrophys. J. 509, 212–228 (1998)ADSCrossRefGoogle Scholar
  29. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007)ADSCrossRefGoogle Scholar
  30. N.E. Yanasak et al., Cosmic-ray time scales using radioactive clocks. Adv. Space Res. 27(4), 727–736 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations