Indirect Cosmic Ray Detection: Particle Showers in the Atmosphere

  • Maurizio Spurio
Part of the Astronomy and Astrophysics Library book series (AAL)


Above 1015 eV, the cosmic ray (CR) flux drops below a few tens of particles per square meter per year. It is no longer possible to detect the incident particles above the atmosphere before they interact. Direct experiments are thus replaced with ground-based instruments that cover up to several thousands of km2, the extensive air shower (EAS) arrays. A completely different experimental approach for CR measurements is used: EAS arrays are, in most cases, large area and long duration experiments studying, as accurately as possible, the nature, flux, mass, and direction of primary CRs up to the highest energies. This chapter describes: the developments of air showers initiated by primary protons and nuclei; the main shower features that characterize the electromagnetic and muonic components; some EAS array detectors using different experimental techniques; and the results obtained in knowledge of the CR flux in the energy region around the knee.


  1. M. Aglietta et al. (EAS-TOP Collaboration), The EAS size spectrum and the cosmic ray energy spectrum in the region 1015 − 1016 eV. Astropart. Phys. 10, 119 (1999)Google Scholar
  2. S.P. Ahlen et al. (MACRO Collaboration), Arrival time distributions of very high energy cosmic ray muons in MACRO. Nucl. Phys. B370, 432–444 (1992)Google Scholar
  3. J. Alvarez-Muniz, R. Engel, T.K. Gaisser, J.A. Ortiz, T. Stanev, Hybrid simulations of extensive air showers. Phys. Rev. D66, 033011 (2002)ADSGoogle Scholar
  4. L. Anchordoqui et al., High energy physics in the atmosphere: phenomenology of cosmic ray air showers. Ann. Phys. 314, 145–207 (2004)ADSCrossRefGoogle Scholar
  5. T. Antoni et al. (KASCADE coll), The cosmic-ray experiment KASCADE. Nucl. Instr. Methods A513, 490–510 (2003)Google Scholar
  6. T. Antoni et al., KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems. Astropart. Phys. 24, 1–25 (2005)ADSCrossRefGoogle Scholar
  7. W.D. Apel et al., Time structure of the EAS electron and muon components measured by the KASCADE-Grande experiment. Astropart. Phys. 29, 317–330 (2008)ADSCrossRefGoogle Scholar
  8. W.D. Apel et al., Kneelike structure in the spectrum of the heavy component of cosmic rays observed with KASCADE-Grande. Phys. Rev. Lett. 107, 171104 (2011)ADSCrossRefGoogle Scholar
  9. B. Bartoli et al. (ARGO-YBJ Collaboration), Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D92, 092005 (2015)Google Scholar
  10. J. Blümer, R. Engel, J.R. Hörandel, Cosmic rays from the knee to the highest energies. Prog. Part. Nucl. Phys. 63, 293–338 (2009)ADSCrossRefGoogle Scholar
  11. S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631zbMATHGoogle Scholar
  12. G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998). ISBN: 978-0198501558Google Scholar
  13. S. Eidelman et al., (Particle data group), Review of particle physics. Phys. Lett. B 592, 1 (2004)Google Scholar
  14. R. Engel, D. Heck, T. Pierog, Extensive air showers and hadronic interactions at high energy. Annu. Rev. Nucl. Part. Sci. 61, 467–489 (2011)ADSCrossRefGoogle Scholar
  15. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1991)Google Scholar
  16. A. Garyaka et al., Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment. Astropart. Phys. 28, 169–181 (2007)ADSCrossRefGoogle Scholar
  17. K. Greisen, Cosmic ray showers. Ann. Rev. Nucl. Part. Sci. 10, 63–108 (1960)ADSCrossRefGoogle Scholar
  18. P.K.F. Grieder, Extensive Air Showers (Springer, Berlin, 2010). ISBN: 978-3-540-76940-8CrossRefGoogle Scholar
  19. D. Heck, CORSIKA: a monte carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe FZKA 6019 (1998)Google Scholar
  20. W. Heitler, Quantum Theory of Radiation (Oxford University Press, Oxford, 1944)zbMATHGoogle Scholar
  21. J.R. Hörandel, On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 19, 193–220 (2003)ADSCrossRefGoogle Scholar
  22. J. Hörandel, Cosmic rays from the knee to the second knee: 1014–1018 eV. Mod. Phys. Lett. A 22, 1533–1552 (2007)ADSCrossRefGoogle Scholar
  23. K. Kamata, J. Nishimura, The lateral and the angular structure functions of electron showers. Prog. Theor. Phys. 6, 93 (1958)CrossRefGoogle Scholar
  24. K.H. Kampert, M. Unger, Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 35, 660 (2012)ADSCrossRefGoogle Scholar
  25. K.-H. Kampert, A.A. Watson, Extensive air showers and ultra high-energy cosmic rays: a historical review. Eur. Phys. J. H 37, 359–412 (2012)ADSCrossRefGoogle Scholar
  26. J. Knapp, D. Heck, Extensive air shower simulation with CORSIKA: a user’s manual. Kernforschungszentrum Karlsruhe KfK 5196 B, 1993; for an up to date version see
  27. A. Letessier-Selvon, T. Stanev, Ultrahigh energy cosmic rays. Rev. Mod. Phys. 83, 907 (2011)ADSCrossRefGoogle Scholar
  28. P. Lipari, The concepts of age and universality in cosmic ray showers. Phys. Rev. D 79, 063001 (2009)ADSCrossRefGoogle Scholar
  29. J. Matthews, A Heitler model of extensive air showers. Astropart. Phys. 22, 387–397 (2005)ADSCrossRefGoogle Scholar
  30. M. Nagano, A.A. Watson, Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72(3), 689–732 (2000)ADSCrossRefGoogle Scholar
  31. B. Rossi, K. Greisen, Cosmic ray theory. Rev. Mod. Phys. 13, 240–309 (1941)ADSCrossRefGoogle Scholar
  32. T. Stanev, High Energy Cosmic Rays (Springer, Berlin, 2010). ISBN: 9783540851486CrossRefGoogle Scholar
  33. S.P. Swordy et al., The composition of cosmic rays at the knee. Astropart. Phys. 18, 129–150 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations