Advertisement

Low-Energy Neutrino Physics and Astrophysics

  • Maurizio Spurio
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

Stellar evolution, the theory of how stars evolve, relies on observations of many stars of different masses, colors, ages, and chemical composition. The energy of stars is provided by nuclear fusion reactions in their core, and their evolution is strongly dependent upon their mass. The Sun, through the Standard Solar Model, is the only star for which the stellar evolution theory can be deeply tested through neutrinos emitted from various thermonuclear processes. The experimental study of solar neutrinos has made a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and providing, at the same time, fundamental indications concerning the physics of the neutrino sector. The solar neutrino experiments (with atmospheric neutrinos) have given compelling evidence for the existence of neutrino oscillations caused by nonzero neutrino masses and neutrino mixing. This has a huge impact on particle physics. It also has consequences on the prediction of the neutrino flavor composition from high-energy neutrino sources. Neutrinos do not only play a key role during the life of a star. When a massive star has exhausted its hydrogen, it evolves by producing energy through the fusion of heavier elements up to iron. Neutrinos produced during such reactions escape unimpeded from the stellar material and more and more intense nuclear burning is needed to replace the huge amount of energy carried away. Once the inner region of a star becomes primarily iron, further compression of the core no longer ignites nuclear fusion; the star collapses to form a compact object such as a neutron star or a black hole. A prominent prediction from theoretical models of the core-collapse of a massive star is that 99% of the gravitational binding energy of the resulting remnant is converted to neutrinos with energies of a few tens of MeV over a timescale of 10 s. Neutrinos were observed from the celebrated 1987A supernova in the Large Magellanic Cloud, the first event of multimessenger astrophysics.

References

  1. J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009)Google Scholar
  2. K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011)ADSCrossRefGoogle Scholar
  3. F. Acero et al., HESS Collab., First detection of VHE gamma-rays from SN1006 by H.E.S.S. Astron. Astrophys. 516, A62 (2010)Google Scholar
  4. B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from the 391-day salt phase SNO data set. Phys. Rev. C 72, 055502 (2005)ADSCrossRefGoogle Scholar
  5. Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)ADSCrossRefGoogle Scholar
  6. M. Altmann et al., Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005)ADSCrossRefGoogle Scholar
  7. P. Antonioli et al., SNEWS: the SuperNova Early Warning System. New J. Phys. 6, 114 (2004)ADSCrossRefGoogle Scholar
  8. V. Antonelli, L. Miramonti, C. Pe\(\tilde {n}\)a Garay, A. Serenelli, Solar neutrinos. Adv. High Energy Phys. 2013, 34 pp (2013); Article ID 351926. https://doi.org/10.1155/2013/351926 CrossRefGoogle Scholar
  9. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009)ADSCrossRefGoogle Scholar
  10. H. Athar, M. Jezabek, O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux. Phys. Rev. D62, 103007 (2000)ADSGoogle Scholar
  11. J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989). ISBN: 978-0521379755. The Solar Standard Model is also described on the website: http://www.sns.ias.edu/jnb/
  12. J. Beringer et al., Particle data group, The review of particle physics. Section: 13. Neutrino mass, mixing, and oscillations. Phys. Rev. D86, 010001 (2012)Google Scholar
  13. H.A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990)ADSCrossRefGoogle Scholar
  14. Borexino Collaboration, Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512, 383 (2014)Google Scholar
  15. S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631zbMATHGoogle Scholar
  16. S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements, Problems and Solutions (Springer, Dordrecht, 2012)zbMATHGoogle Scholar
  17. C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, LUNA: nuclear astrophysics deep underground. Annu. Rev. Nucl. Part. Sci. 60, 53–73 (2010)ADSCrossRefGoogle Scholar
  18. F. Calaprice, C. Galbiati, A. Wright, A. Ianni, Results from the Borexino solar neutrino experiment. Annu. Rev. Nucl. Part. Sci. 62, 315–336 (2012)ADSCrossRefGoogle Scholar
  19. G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. Phys. Rev. D86, 013012 (2012)ADSGoogle Scholar
  20. Y. Fukuda et al., Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683 (1996)ADSCrossRefGoogle Scholar
  21. J. Gava, J. Kneller, C. Volpe, G.C. McLaughlin, A dynamical collective calculation of supernova neutrino signals. Phys. Rev. Lett. 103, 071101 (2009)ADSCrossRefGoogle Scholar
  22. W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999)ADSCrossRefGoogle Scholar
  23. W. Haxton, The scientific life of John Bahcall. Annu. Rev. Nucl. Part. Sci. 59, 1–20 (2009)ADSCrossRefGoogle Scholar
  24. W.C. Haxton, R.G. Hamish Robertson, A.M. Serenelli, Solar neutrinos: status and prospects. Annu. Rev. Astron. Astrophys. 51, 21–61 (2013)ADSCrossRefGoogle Scholar
  25. A. Hoeflich, E. Mueller, P. Hoeflich, Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 270, 223–248 (1993)ADSGoogle Scholar
  26. H.Th. Janka et al., Theory of core-collapse Supernovae. Phys. Rep. 442, 38 (2007)ADSCrossRefGoogle Scholar
  27. N. Jelley, A.B. McDonald, R.G.H. Robertson, The sudbury neutrino observatory. Annu. Rev. Nucl. Part. Sci. 59, 431–465 (2009)ADSCrossRefGoogle Scholar
  28. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)CrossRefGoogle Scholar
  29. M. Koshiba, Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992)ADSCrossRefGoogle Scholar
  30. K. Lande, The life of Raymond Davis, Jr. and the beginning of neutrino astronomy. Annu. Rev. Nucl. Part. Sci. 59, 21–39 (2009)ADSCrossRefGoogle Scholar
  31. P. Lipari, Introduction to neutrino physics, in 1st CERN—CLAF School of High-energy Physics, Itacuruca, Brazil (2001). http://cds.cern.ch/record/677618/files/p115.pdf
  32. L.A. Marschall, The Supernova Story (Princeton Science Library, Princeton, 1988). ISBN: 978-0691036335CrossRefGoogle Scholar
  33. C. Patrignani et al. (Particle data group), Chin. Phys. C 40, 100001 (2016/2017)Google Scholar
  34. G. Raffelt, Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163 (1999)ADSCrossRefGoogle Scholar
  35. K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81 (2012)ADSCrossRefGoogle Scholar
  36. A.M. Serenelli, W.C. Haxton, C. Pena-Garay, Solar models with accretion. I. Application to the solar abundance problem. Astrophys. J. 743, 24 (2011)CrossRefGoogle Scholar
  37. M.B. Smy et al., SK Collab., Super-Kamiokande’s solar ν. Nucl. Phys. B Proc. Suppl. 49, 235–236 (2013)Google Scholar
  38. F.-K. Thielemann et al., Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253 (2017)ADSCrossRefGoogle Scholar
  39. S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations