An Overview of Multimessenger Astrophysics

  • Maurizio Spurio
Part of the Astronomy and Astrophysics Library book series (AAL)


The Standard Model of the microcosm, which includes the theory of electroweak interaction and quantum chromodynamics for strong interaction, explains all available experimental results in particle physics quite well. On the other hand, few physicists believe that the Standard Model is the ultimate theory. Some considerations show that the model is incomplete and represents a sort of low energy limit of a more fundamental theory, which should reveal itself at higher energies. The threshold for this higher energy limit could be so high that no accelerator on Earth, or even in the far future, will be able to reach it. On the other hand, the study of the evolution and history of our Universe, has produced an equivalent Standard Model of the macrocosm. This chapter describes the connections among particle physics, astrophysics, and cosmology and introduces the content of the book: the use of different probes to test the status of our knowledge on the microcosm and macrocosm.


  1. F. Aharonian, J. Buckley, T. Kifune, G. Sinnis, High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71, 096901 (2008)ADSCrossRefGoogle Scholar
  2. J.N. Bachall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989)Google Scholar
  3. A. Bettini, The world underground scientific facilities. A compendium (2007). arXiv:0712.1051
  4. S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631zbMATHGoogle Scholar
  5. S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements, Problems and Solutions (Springer, Berlin, 2012). ISBN: 978-9400741355zbMATHGoogle Scholar
  6. T. Courvoisier, High Energy Astrophysics. An Introduction (Springer, Berlin, 2013). ISBN: 978-3642436840CrossRefGoogle Scholar
  7. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1991). ISBN: 978-0521339315Google Scholar
  8. C. Grupen, Astroparticle Physics (Springer, Berlin, 2005). ISBN: 978-3540253129Google Scholar
  9. W.L. Kraushaar, G.W. Clark, G.P. Garmire, R. Borken, P. Higbie, C. Leong, T. Thorsos, High-energy cosmic gamma-ray observations from the OSO-3 satellite. Astrophys. J. 186, 401–402 (1973)ADSCrossRefGoogle Scholar
  10. K.R. Lang, Essential Astrophysics (Springer, Berlin, 2013). ISBN: 978-3642359637CrossRefGoogle Scholar
  11. LIGO Scientific Collaboration et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017)Google Scholar
  12. P. Lipari, Introduction to Neutrino Physics (2006).
  13. M.S. Longair, High Energy Astrophysics, 3rd edn. (Cambridge University Press, Cambridge, 2011). ISBN: 978-0521756181Google Scholar
  14. P. Mészáros, The high energy universe, in Ultra-High Energy Events in Astrophysics and Cosmology (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  15. R. Poggiani, High Energy Astrophysical Techniques (Springer International Publishing, Cham, 2017). ISBN: 978-3319447285CrossRefGoogle Scholar
  16. A. Rai Choudhuri, Astrophysics for Physicists (Cambridge University Press, Cambridge, 2012). ISBN: 978-1107024137Google Scholar
  17. T. Saab, An introduction to dark matter direct detection searches and techniques (2014). arXiv:1203.2566
  18. P. Sokolsky, Introduction to Ultrahigh Energy Cosmic Ray Physics (Westview Press, Colorado, 2004). ISBN: 978-0813342122Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maurizio Spurio
    • 1
  1. 1.Department of Physics and Astronomy, and INFNUniversity of BolognaBolognaItaly

Personalised recommendations