Advertisement

Current Massively Parallel Sequencing Technologies: Platforms and Reporting Considerations

  • John R. ten Bosch
  • Wayne W. GrodyEmail author
Chapter

Abstract

Over the past several years, DNA sequencing has undergone a dramatic transformation in speed and throughput. Instead of the traditional approach of sequencing one small (several hundred bp) DNA region at a time, using a specific pair of complementary primers targeted to just that area of interest, the new sequencing platforms utilize a shotgun approach, randomly shearing the entire genome into over 300 million small fragments, sequencing each of them repeatedly in parallel, and then reconstructing the resulting sequences, using sophisticated computer software, into the complete genome. This “next-generation” or “massively parallel” DNA sequencing technology has truly been a “game changer,” allowing for practical and timely sequencing of large panels of genes, of all the coding regions of the genome (the exome), or of the whole genome itself in the clinical setting. This chapter will review the major NGS platforms currently in use, as well as the interpretive and ethical challenges involved in filtering through the countless sequence variants observed to generate a meaningful clinical report.

Keywords

DNA sequencing Next-generation sequencing Clinical genomics Whole-exome sequencing Incidental findings 

References

  1. 1.
    ten Bosch JR, Grody WW. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn. 2008;10:484–92.CrossRefGoogle Scholar
  2. 2.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.CrossRefGoogle Scholar
  3. 3.
    Trachtenberg EA, Holcomb CL. Next-generation HLA sequencing using the 454 GS FLX system. Methods Mol Biol. 2013;1034:197–219.CrossRefGoogle Scholar
  4. 4.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.CrossRefGoogle Scholar
  5. 5.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRefGoogle Scholar
  6. 6.
    Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, Humphray S, Saffrey P, Kingsbury Z, Weir JC, Betley J, Grocock RJ, Margulies EH, Farrow EG, Artman M, Safina NP, Petrikin JE, Hall KP, Kingsmore SF. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4(154):154ra135.CrossRefGoogle Scholar
  7. 7.
    Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9.CrossRefGoogle Scholar
  8. 8.
    Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, Mellmann A, Goesmann A, von Haeseler A, Stoye J, Harmsen D. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31(4):294–6.CrossRefGoogle Scholar
  9. 9.
    Bijwaard K, Dickey JS, Kelm K, Težak Ž. The first FDA marketing authorizations of next-generation sequencing technology and tests: challenges, solutions and impact for future assays. Expert Rev Mol Diagn. 2015;15:33–40.CrossRefGoogle Scholar
  10. 10.
    Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, Weinstock GM, Gibbs RA. Direct selection of human genomic loci by microarray hybridization. Nat Methods. 2007;4:903–5.CrossRefGoogle Scholar
  11. 11.
    Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.CrossRefGoogle Scholar
  12. 12.
    Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME. Microarray-based genomic selection for high-throughput resequencing. Nat Methods. 2007;4:907–9.CrossRefGoogle Scholar
  13. 13.
    Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27:182–9.CrossRefGoogle Scholar
  14. 14.
    Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, LeProust EM, Peck BJ, Emig CJ, Dahl F, Gao Y, Church GM, Shendure J. Multiplex amplification of large sets of human exons. Nat Methods. 2007;4:931–6.CrossRefGoogle Scholar
  15. 15.
    Mandelker D, Schmidt RJ, Ankala A, McDonald Gibson K, Bowser M, Sharma H, Duffy E, Hegde M, Santani A, Lebo M, Funke B. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med. 2016;18:1282–9.CrossRefGoogle Scholar
  16. 16.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRefGoogle Scholar
  17. 17.
    Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects of genomic diagnostics for precision oncology. J Clin Oncol. 2017;35:929–33.CrossRefGoogle Scholar
  18. 18.
    Harris G, O’Toole S, George P, Browett P, Print C. Massive parallel sequencing of solid tumours – challenges and opportunities for pathologists. Histopathology. 2017;70:123–33.CrossRefGoogle Scholar
  19. 19.
    Kanagal-Shamanna R, Singh RR, Routbort MJ, Patel KP, Medeiros LJ, Luthra R. Principles of analytical validation of next-generation sequencing based mutational analysis for hematologic neoplasms in a CLIA-certified laboratory. Expert Rev Mol Diagn. 2016;16:461–72.CrossRefGoogle Scholar
  20. 20.
    Gundry M, Vijg J. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat Res. 2012;729:1–15.CrossRefGoogle Scholar
  21. 21.
    Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet. 2010;19(R2):R188–96.CrossRefGoogle Scholar
  22. 22.
    Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, Andersen M, Corless CL. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15:171–6.CrossRefGoogle Scholar
  23. 23.
    Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, Sanford T, Buddavarapu K, Krosting J, Garmire L, Wylie D, Shinde R, Beaudenon S, Alexander EK, Mambo E, Adai AT, Latham GJ. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J Mol Diagn. 2013;15:234–47.CrossRefGoogle Scholar
  24. 24.
    Vendrell JA, Taviaux S, Béganton B, Godreuil S, Audran P, Grand D, Clermont E, Serre I, Szablewski V, Coopman P, Mazières J, Costes V, Pujol JL, Brousset P, Rouquette I, Solassol J. Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 2017;7:12510.CrossRefGoogle Scholar
  25. 25.
    Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B, Gibson JS, Grody WW, Hegde MR, Hoeltge GA, Leonard DG, Merker JD, Nagarajan R, Palicki LA, Robetorye RS, Schrijver I, Weck KE, Voelkerding KV. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med. 2015;139:481–93.CrossRefGoogle Scholar
  26. 26.
    Altmann A, Weber P, Bader D, Preuss M, Binder EB, Müller-Myhsok B. A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum Genet. 2012;131:1541–54.CrossRefGoogle Scholar
  27. 27.
    Torri F, Dinov ID, Zamanyan A, Hobel S, Genco A, Petrosyan P, Clark AP, Liu Z, Eggert P, Pierce J, Knowles JA, Ames J, Kesselman C, Toga AW, Potkin SG, Vawter MP, Macciardi F. Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel). 2012;3:545–75.CrossRefGoogle Scholar
  28. 28.
    Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38:1767–71.CrossRefGoogle Scholar
  29. 29.
    Ruffalo M, LaFramboise T, Koyutürk M. Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics. 2011;27:2790–6.CrossRefGoogle Scholar
  30. 30.
    Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010;11:473–83.CrossRefGoogle Scholar
  31. 31.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.CrossRefGoogle Scholar
  32. 32.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.CrossRefGoogle Scholar
  33. 33.
    Stitziel NO, Kiezun A, Sunyaev S. Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol. 2011;12:227.CrossRefGoogle Scholar
  34. 34.
    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.CrossRefGoogle Scholar
  35. 35.
    Clarke L, Zheng-Bradley X, Smith R, Kulesha E, Xiao C, Toneva I, Vaughan B, Preuss D, Leinonen R, Shumway M, Sherry S, Flicek P, 1000 Genomes Project Consortium. The 1000 genomes project: data management and community access. Nat Methods. 2012;9:459–62.CrossRefGoogle Scholar
  36. 36.
    Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN. The human gene mutation database: 2008 update. Genome Med. 2009;1:13.CrossRefGoogle Scholar
  37. 37.
    Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, Kattman BL, Maglott DR. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017;46:D1062.CrossRefGoogle Scholar
  38. 38.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.CrossRefGoogle Scholar
  39. 39.
    Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.CrossRefGoogle Scholar
  40. 40.
    Grody WW, Cutting GR, Klinger KW, Richards CS, Watson MS, Desnick RJ. Laboratory standards and guidelines for population-based cystic fibrosis carrier screening. Genet Med. 2001;3:149–54.CrossRefGoogle Scholar
  41. 41.
    Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefGoogle Scholar
  42. 42.
    Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M, Fox M, Fogel BL, Martinez-Agosto JA, Wong DA, Chang VY, Shieh PB, Palmer CG, Dipple KM, Grody WW, Vilain E, Nelson SF. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7.CrossRefGoogle Scholar
  43. 43.
    Kohane IS, Masys DR, Altman RB. The incidentalome: a threat to genomic medicine. JAMA. 2006;296:212–5.CrossRefGoogle Scholar
  44. 44.
    Green RC, Berg JS, Berry GT, Biesecker LG, Dimmock DP, Evans JP, Grody WW, Hegde MR, Kalia S, Korf BR, Krantz I, McGuire AL, Miller DT, Murray MF, Nussbaum RL, Plon SE, Rehm HL, Jacob HJ. Exploring concordance and discordance for return of incidental findings from clinical sequencing. Genet Med. 2012;14(4):405–10.CrossRefGoogle Scholar
  45. 45.
    Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.CrossRefGoogle Scholar
  46. 46.
    Wolf SM, Annas GJ, Elias S. Point-counterpoint. Patient autonomy and incidental findings in clinical genomics. Science. 2013;340:1049–50.CrossRefGoogle Scholar
  47. 47.
    Allyse M, Michie M. Not-so-incidental findings: the ACMG recommendations on the reporting of incidental findings in clinical whole genome and whole exome sequencing. Trends Biotechnol. 2013;31:439–41.CrossRefGoogle Scholar
  48. 48.
    ACMG Board of Directors. ACMG policy statement: updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. Genet Med. 2015;17:68–9.CrossRefGoogle Scholar
  49. 49.
    Supreme Court of the United States. Association for Molecular Pathology et al. vs. Myriad Genetics, Inc.; 2013. http://www.supremecourt.gov/opinions/12pdf/12-398_1b7d.pdf.
  50. 50.
    Béroud C, Letovsky SI, Braastad CD, et al. BRCA share: a collection of clinical BRCA gene variants. Hum Mutat. 2016;37:1318–28.CrossRefGoogle Scholar
  51. 51.
    Hirschhorn K, Fleisher LD, Godmilow L, et al. Duty to re-contact. Genet Med. 1999;1:171–2.CrossRefGoogle Scholar
  52. 52.
    Pyeritz RE. The coming explosion in genetic testing – is there a duty to recontact? N Engl J Med. 2011;365:1367–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TPMG Regional Genetics Laboratory, Department of GeneticsKaiser Permanente Medical CenterSan JoseUSA
  2. 2.Departments of Pathology and Laboratory Medicine, Pediatrics, and Human GeneticsUCLA School of Medicine, Molecular Diagnostic Laboratories and Clinical Genomics Center, UCLA Medical CenterLos AngelesUSA

Personalised recommendations