Advertisement

Mapping Agricultural Terraces in Italy. Methodologies Applied in the MAPTER Project

  • Francesco Ferrarese
  • Salvatore Eugenio Pappalardo
  • Alberto Cosner
  • Stefano Brugnaro
  • Kaodi Alum
  • Angelica Dal Pozzo
  • Massimo De Marchi
Chapter
Part of the Environmental History book series (ENVHIS, volume 9)

Abstract

Agricultural terraced systems and their geographical distribution are not often represented in maps, even if they play an important role in hydro-geological hazard: Moreover, detailed cartography of these features could improve understanding and valuing their environmental, social, and economic complexity. The general aim of the MAPTER project is to map and quantify the extension the Italian terraced systems. To do that, it was necessary to apply different methodologies according to different data sources locally available: (i) traditional cartographic and photo analysis, (ii) orthophoto and high-resolution satellite images, (iii) DTM LiDAR analysis, (iv) Web Map Services and Geobrowser analysis, (v) participatory mapping and Voluntary Geography Activities, (vi) the use of unmanned aerial vehicles (UAVs). At the time of this paper, the LiDAR DTM allows us to highly improve the traditional methodologies of cartographic and aerial photos analyses, in terms of precision, costs, and time-consuming: Many terraced systems in Italy appear to be underestimated by the previous, traditional, methodologies in comparison with the results obtained by LiDAR technology and LiDAR data elaboration. This work tested different methodologies and approaches to survey study areas in the Italian context, representing a starting point to coordinate researches among academic institutions, public administrations, voluntary geographers, and citizens science, in order to implement the geographical knowledge for terraced systems and landscapes, key heritage of Italian territories.

Notes

Acknowledgements

The MAPTER project was realized thanks to the contribution of many universities, research institutes, public institutions, organizations, and individuals. We wish to thanks G. Brancucci (University of Genova), L. Bonardi, R. Madoi (University of Milan), G. Mauro, A. Giadrossi (University of Trieste), F. Lucchesi, C. A. Garzonio (University of Florence), E. Bonari, D. Rizzo (Scuola Superiore Sant’Anna—Pisa), A. Riggio, S. Modugno (University of Cassino and Southern Lazio), L. Fusco Girard, A. Gravagnuolo, M. Ronza (University of Naples Federico II), S. Di Fazio, G. Modica, S. Praticò (University of Reggio Calabria), G. Barbera, S. Cullotta (University of Palermo), G. Sistu, A. Pirinu (University of Cagliari), G. Tecilla, A. Cosner, G. Altieri (Autonomous Province of Trento), F. Alberti, U. Trivelloni (Veneto Region), M. Baldo, P. Giostrella, D. Giordan, D. Godone (CNR-Irpi, Turin), S. Costetti, D. Genovese, F. Laganà, E. Micati, M. Micheletti, T. Saggiorato (Italian Alpine Club).

Moreover, we are grateful to the “Ministero dell’Ambiente e della Tutela del Territorio e delle Acque, Geoportale Nazionale” for the availability of LiDAR data of many areas of the Italian coasts and islands and to the Department of “Regione Veneto, Ambiente e Territorio” for the regional LiDAR data.

References

  1. Agnoletti M, Conti L, Frezza L, Monti M, Santoro A (2015) Features analysis of dry stone walls of Tuscany (Italy). Sustainability 7:13887–13903CrossRefGoogle Scholar
  2. Barbera G, Cullotta S, Rossi-Doria I, Rühl J, Rossi-Doria B (2010) I paesaggi a terrazze in Sicilia: metodologie per l’analisi, la tutela e la valorizzazione. In: Collana studi e ricerche dell’Arpa Sicilia, vol 7. ARPA Sicilia, Agenzia Regionale Protezione AmbienteGoogle Scholar
  3. Bonardi L, Varotto M (2016) Paesaggi terrazzati d’Italia. Eredità storiche e nuove prospettive. Franco AngeliGoogle Scholar
  4. Brancucci G, Masetti M (2008) I sistemi terrazzati: un patrimonio, un rischio. In: Scaramellini G, Varotto M (eds) Paesaggi terrazzati dell’arco alpino. Atlante. Marsilio, Venezia, pp 46–54Google Scholar
  5. Brancucci G, Paliaga G (2006) The hazard assessment in a terraced landscape: the Liguria (Italy) study case in Interreg III Alpter project. In: ECI conference on geohazards, Lillehammer, NorwayGoogle Scholar
  6. Brandolini P (2010) I versanti delle Cinque Terre: un patrimonio ambientale e paesaggistico a rischio. Sopra il livello del mare. La Rivista dell’Ente Italiano della Montagna. Numero speciale: il paesaggio costruito. Salvaguardia e valorizzazione dei terrazzamenti artificiali 36:54–56Google Scholar
  7. Brandolini P, Faccini F, Pescetto C (2008) I paesaggi terrazzati d’Italia. I Terrazzamenti della Liguria: un bene culturale e del paesaggio a rischio. L’Universo 88(2):206–221Google Scholar
  8. Brugnaro S (2016) Estrazione mediante approccio Semi Automatico da dati LiDAR, per la quantificazione dei terrazzamenti agricoli: il caso di Amalfi. Unpublished thesis of the ‘II level Master in GISscience and Unmanned Aerial Vehicle’, University of PadovaGoogle Scholar
  9. Gravagnuolo A, Di Martino F (2015) GIS tools for mapping and classification of agricultural areas at risk of abandonment in terraced cultural landscapes. In: Sessa S, Di Martino F, Cardone B (eds) GIS DAY 2015. Il GIS per il governo e la gestione del territorio. Aracne Editrice, RomaGoogle Scholar
  10. Hengl T, Reuter HI (eds) (2009) Geomorphometry: concepts, software, applications. In: Developments in soil science, vol 33. ElsevierGoogle Scholar
  11. ISPRA (Istituto Superiore Per la Ricerca Ambientale) (2013) Linee guida per la valutazione del dissesto ecologico e la sua mitigazione attraverso misure e interventi in campo agricolo e forestale. Manuali e linee guida, 85. Ministero dell’Ambiente e della tutela del territorio e del mare, Ministero delle politiche agricole, alimentari e forestaliGoogle Scholar
  12. Jasiewicz J, Zwoliński Z, Mitasova H, Hengl T (eds) (2015) Geomorphometry for geosciences. Adam Mickiewicz University in Poznań—Institute of Geoecology and Geoinformation, International Society for Geomorphometry, PoznańGoogle Scholar
  13. Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation, 7th edn. WileyGoogle Scholar
  14. Minar J, Evans IS (2008) Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95:236–259CrossRefGoogle Scholar
  15. Modica G, Merlino A, Solano F, Mercurio R (2015) An index for the assessment of degraded mediterranean forest ecosystems. For Syst 24:2171–9845Google Scholar
  16. Ninfo A (2008) Valutazione della pericolosità in aree terrazzate nel Canale di Brenta: un approccio su base LiDAR. In: Fontanari E, Patassini D (eds) Paesaggi terrazzati dell’arco alpino. Esperienze di Progetto. Marsilio, Venezia, pp 28–30Google Scholar
  17. Ore G, Bruins HJ (2012) Design features of ancient agriculture terrace walls in the Negev Desert: human-made geodiversity. Land Degrad Dev 23:409–418CrossRefGoogle Scholar
  18. Passalacqua P, Tarolli P, Foufoula-Georgiou E (2010) Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resour Res 46:W11535CrossRefGoogle Scholar
  19. Rizzo D, Galli M, Sabbatini T, Bonari E (2007) Terraced landscapes characterization. Developing a methodology to map and analyze the agricultural management impacts (Monte Pisano, Italy). Rev Int Géomat 17:431–447CrossRefGoogle Scholar
  20. Ronza M (2006) Versanti terrazzati tra tufi e calcari: valenze ambientali, destinazioni agronomiche, scale di osservazione. Geotema 29:83–99. Patròn Editore, BolognaGoogle Scholar
  21. Rühl J, Pasta S, La Mantia T (2005) Metodologia per lo studio delle successioni secondarie in ex-coltivi terrazzati: il caso di studio di Pantelleria (Canale di Sicilia). Forest@ 2(4):388–398CrossRefGoogle Scholar
  22. Sas RJ, Yu JP, Pau CYY, Styles KA (2012) Detection of old agricultural terraces in steep, vegetated terrain using airborne LiDAR: case study from Hong Kong. In: Proceedings of the 33rd Asian conference of remote sensing, vol I, Pattaya, Thailand, 26–30 Nov 2012, pp 408–417Google Scholar
  23. Sofia G, Marinello F, Tarolli P (2014) A new landscape metric for the identification of terraced sites: the Slope Local Length of Auto-Correlation (SLLAC). ISPRS J Photogram Remote Sens 96:123–133CrossRefGoogle Scholar
  24. Tarolli P, Sofia G, Calligaro S, Prosdocimi M, Preti F, Dalla Fontana G (2015) Vineyards in terraced landscapes: new opportunities from LiDAR data. Land Degrad Dev 26:92–102CrossRefGoogle Scholar
  25. Terranova L (2016) Estrazione e valutazione dei terrazzamenti agricoli nel contesto eoliano: il caso di Filicudi. Unpublished thesis of the ‘II level Master in GISscience and Unmanned Aerial Vehicle’, University of PadovaGoogle Scholar
  26. Tres M, Zatta E (2006) Paesaggi terrazzati nel Canale di Brenta. Unpublished dissertation thesis in Landscape Planning, IUAV—University of Architecture of VeniceGoogle Scholar
  27. Varotto M (2004) Geografie dell’abbandono. Valstagna e la fine della civiltà del tabacco. In: Perco D, Varotto M (eds) Uomini e paesaggi del Canale di Brenta. Cierre Edizioni, Sommacampagna (VR), pp 213–226Google Scholar
  28. Varotto M, Ferrarese F (2008) Mapping and geographical classification of terraced landscapes: problems and proposals. In: Scaramellini G, Varotto M (eds) Terraced landscapes of the Alps. Atlas. Marsilio, Venezia, pp 38–45Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Ferrarese
    • 1
  • Salvatore Eugenio Pappalardo
    • 2
  • Alberto Cosner
    • 3
  • Stefano Brugnaro
    • 2
  • Kaodi Alum
    • 1
  • Angelica Dal Pozzo
    • 1
  • Massimo De Marchi
    • 2
  1. 1.Department of Historical, Geographic Sciences and the Ancient WorldUniversity of PadovaPaduaItaly
  2. 2.Department of CivilEnvironmental and Architectural Engineering, University of PadovaPaduaItaly
  3. 3.Archaeologist Freelance ProfessionalTrentoItaly

Personalised recommendations