Advertisement

Future Research

  • Nikos C. Apostolopoulos
Chapter

Abstract

In 1887, Professor Senn remarked that one of the “great objectives in life is to become a contributor to science”. In an attempt to discern activities that would become instrumental in the development of the scientific method, researchers discovered that through systematic observation and experimentation, analysis, and deductive and inductive reasoning, one was able to ascertain relationships amongst conditions. The knowledge garnered from this method was conducive for enlarging and increasing scientific boundaries thereby providing a systematic and deep insight into a problem. Although not always concerned with discovering an immediate solution, research forms the foundation from which to pursue future inquiry. Future research provides an opportunity to investigate any gaps, aiding and allowing for the further development and validation of the present inquiry, stretch intensity and the inflammatory response. It establishes a framework from which to further examine, interpret, and understand the potential role of stretch intensity in relation to other conditions (i.e. recovery and regeneration, relaxation response, etc.). Moreover, the success of any research programme or inquiry employs a mixture of complimentary approaches or methods to address any mechanism(s) contributing to our understanding. This is critical for informing and validating the present text in an effort to improve our understanding of the role of stretching intensity.

References

  1. Adams, G. R. (2002). Autocrine/paracrine IGF-I and skeletal muscle adaptation. Journal of Applied Physiology, 93, 1159–1167.PubMedCrossRefGoogle Scholar
  2. Akira, S., Hirano, T., Taga, T., & Kishimoto, T. (1990). Biology of multifunctional cytokines: IL-6 and related molecules (IL-1 and TNF). FASEB, 4, 2860–2867.CrossRefGoogle Scholar
  3. Akira, S., Taga, T., & Kishimoto, T. (1993). Interleukin-6 in biology and medicine. Advances in Immunology, 54, 1–78.PubMedCrossRefGoogle Scholar
  4. Apostolopoulos, N. (2004). Microstretching-a new recovery and regeneration technique. New Studies in Athletics, 19, 47–54.Google Scholar
  5. Apostolopoulos, N. (2010). microStretching-A practical approach for recovery and regeneration. New Studies in Athletics, 25, 81–97.Google Scholar
  6. Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: A brief review. Medicine and Science in Sports and Exercise, 16, 529–538.PubMedGoogle Scholar
  7. Aronson, D., Wojtaszewski, J. F., Thorell, A., Nygren, J., Zangen, D., Richter, E. A., et al. (1998). Extracellular-regulated protein kinase cascades are activated in response to injury in human skeletal muscle. American Journal of Physiology. Cell Physiology, 275, C555–C561.CrossRefGoogle Scholar
  8. Atzeni, F., Cazzola, M., Benucci, M., Di Franco, M., Salaffi, F., & Sarzi-Puttini, P. (2011). Chronic widespread pain in the spectrum of rheumatological diseases. Best Practice & Research: Clinical Rheumatology, 25, 165–171.CrossRefGoogle Scholar
  9. Barbieri, E., & Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction, 2012, 1–17.CrossRefGoogle Scholar
  10. Beary, J. F., & Benson, H. (1974). A simple psychophysiologic technique which elicits the hypometabolic changes of the relaxation response. Psychosomatic Medicine, 36, 115–120.PubMedCrossRefGoogle Scholar
  11. Beaton, L. J., Tarnopolsky, M. A., & Phillips, S. M. (2002). Contraction-induced muscle damage in humans following calcium channel blocker administration. The Journal of Physiology, 544, 849–859.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benington, J. H., & Heller, H. C. (1995). Restoration of brain energy metabolism as a function of sleep. Progress in Neurobiology, 45, 347–360.PubMedCrossRefGoogle Scholar
  13. Benson, H. (2000). The relaxation response. New York: Harper Collins.Google Scholar
  14. Berdej-del-Fresno, D., & Laupheimer, M. W. (2014). Recovery and regeneration behaviours in elite English futsal players. Am. Journal of Sports Science and Medicine, 2, 77–82.CrossRefGoogle Scholar
  15. Bhasin, M. K., Dusek, J. A., Chang, B.-H., Joseph, M. G., Denninger, J. W., Fricchione, G. L., et al. (2013). Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS One, 8, 1–13.Google Scholar
  16. Botar-Jid, C., Damian, L., Dudea, S. M., Vasilescu, D., Rednic, S., & Badea, R. (2010). The contribuition of ultrasonography and sonoelastography in assessment of myositis. Medical Ultrasonography, 12, 120–126.PubMedGoogle Scholar
  17. Bruunsgaard, H., Galbo, H., Halkjaer, K. J., Johansen, T. L., Maclean, D. A., & Pedersen, B. K. (1997). Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. The Journal of Physiology, 499, 833–841.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine, 33, 145–164.PubMedCrossRefGoogle Scholar
  19. Cimino, M. A., Ferrone, C., & Cutolo, M. (2011). Epidemiology of chronic musculoskeletal pain. Best Practice & Research: Clinical Rheumatology, 25, 173–183.CrossRefGoogle Scholar
  20. Clark, R., & Kupper, T. (2005). Old meets new: The interaction between innate and adaptive immunity. The Journal of Investigative Dermatology, 125, 629–637.PubMedCrossRefGoogle Scholar
  21. Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American journal of physical medicine & rehabilitation, 81, S52–S69.CrossRefGoogle Scholar
  22. Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24, 512–520.PubMedGoogle Scholar
  23. Closa, D., & Folch-Puy, E. (2004). Oxygen free radicals and the systemic inflammatory response. IUBMB Life, 56, 185–191.PubMedCrossRefGoogle Scholar
  24. Coutts, A. J., & Aoki, M. S. (2009). Monitoring training in team sports. Olympic Laboratory: Technical Scientific Bulletin of the Brazilian Olympic Committee, 9, 1–3.Google Scholar
  25. Crombie, I. K., Croft, P., Linton, S. J., Lereasche, L., & Von Koff, M. (1999). Epidemiology of pain. Seattle, WA: IASP Press.Google Scholar
  26. Drakonaki, E. E., & Allen, G. M. (2012). Ultrasound elastography for musculoskeletal applications. The British Journal of Radiology, 85, 1435–1445.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedCrossRefGoogle Scholar
  28. Elenkov, I. J., Iezzoni, D. G., Daly, A., Harris, A. G., & Chrousos, G. P. (2005). Cytokine dysregulation, inflammation and well being. Neuroimmunomodulation, 12, 255–269.PubMedCrossRefGoogle Scholar
  29. Farber, J. L. (1994). Mechanisms of cell injury by activated oxygen species. Environmental Health Perspectives, 102, 17–24.PubMedPubMedCentralGoogle Scholar
  30. Faulkner, R. A., Brooks, S. V., & Opiteck, J. A. (1993). Injury to skeletal muscle fibers during contractions: Conditions of occurrence and prevention. Physical Therapy, 73, 911–921.PubMedCrossRefGoogle Scholar
  31. Felson, D. T. (2000). Epidemiology of the rheumatic diseases. Philadelphia: Lippincott, Williams & Collins.Google Scholar
  32. Fukashiro, S., Itoh, M., Ichinose, Y., Kawakami, Y., & Fukunaga, T. (1995). Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. European Journal of Applied Physiology, 71, 555–557.CrossRefGoogle Scholar
  33. Gamble, P. (2006). Periodization of training for team sports athletes. Strength and Conditioning Journal, 28, 56–66.CrossRefGoogle Scholar
  34. Garrett, W. E., Safran, M., Seaber, V. A., Glisson, R. R., & Ribbeck, M. B. (1987). Biochemical comparison of simulated and non-simulated skeletal muscle pulled to failure. The American Journal of Sports Medicine, 15, 448–454.PubMedCrossRefGoogle Scholar
  35. Gatchel, R. J. (2004). Comorbidity of chronic pain and mental health disorders: The biopsychosocial perspective. The American Psychologist, 59, 795–805.PubMedCrossRefGoogle Scholar
  36. Grebe, K. M., Takeda, K., Hickman, H. D., Bailey, A. L., Embry, A. C., Bennick, J. R., et al. (2010). Cutting edge: Sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza a virus pathogenesis. Journal of Immunology, 184, 540–544.CrossRefGoogle Scholar
  37. Gruys, E., Toussaint, M. J. M., Niewold, T. A., & Koopmans, S. J. (2005). Acute phase reaction and acute phase proteins. Journal of Zhejiang University. Science. B, 6, 1045–1056.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Inoue, S., Honda, K., & Komoda, Y. (1995). Sleep as neuronal detoxification and restitution. Behavioural Brain Research, 69, 91–96.PubMedCrossRefGoogle Scholar
  39. Jarvinen, M. J., & Lehto, M. U. K. (1993). The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Medicine, 15, 78–89.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kalimo, H., & Jarvinen, M. J. (1997). Muscle injuries in sports. Bailliere’s Clinical Orthopaedics, 2, 1–24.Google Scholar
  41. Kasemkijwattana, C., Menetrey, J., Dai, C. S., Bosch, P., Buranapanitkit, B., Moreland, M. S., et al. (1998). Biologic intervention in muscle healing and regeneration. Sports Medicine and Arthroscopy Review, 6, 95–102.CrossRefGoogle Scholar
  42. Kentta, G., & Hassmen, P. (1998). Overtraining and recovery. A conceptual model. Sports Medicine, 26, 1–16.PubMedCrossRefGoogle Scholar
  43. Ker, R. F., Alexander, R. M., & Bennett, M. B. (1988). Why are mammalian tendons so thick? Journal of Zoology, London, 216, 309–324.CrossRefGoogle Scholar
  44. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175.PubMedCrossRefGoogle Scholar
  45. Koutedakis, Y., Metsios, G. S., & Stavropoulos-Kalinoglou, A. (Eds.). (2006). Periodization of exercise training in sport. Philidelphia: Churchill-Livingstone Elsevier.Google Scholar
  46. Kubo, K., Kanehisa, H., & Fukunaga, T. (2001). Effect of stretching training on the viscoelastic propertties of human tendon structures in vivo (abstract). Journal of Ultrasound in Medicine, 20, 128.Google Scholar
  47. Kubo, K., Kanehisa, H., & Fukunaga, T. (2002). Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. Journal of Applied Physiology, 92, 595–601.PubMedCrossRefGoogle Scholar
  48. Li, Y., Cummins, J., & Huard, J. (2001). Muscle injury and repair. Current Opinion in Orthopaedics, 12, 409–415.CrossRefGoogle Scholar
  49. Lieber, R. L., & Friden, J. (1993). Muscle damage is not a function of muscle force but active muscle strain. Journal of Applied Physiology, 74, 520–526.PubMedCrossRefGoogle Scholar
  50. Macintyre, D. L., Reid, W. D., & McKenzie, D. C. (1995). The inflammatory response to muscle injury and its clinical implications. Sports Medicine, 20, 24–40.PubMedCrossRefGoogle Scholar
  51. Mackiewicz, M., Shockley, K. R., Romer, M. A., Galante, R. J., Zimmerman, J. E., Naidoo, N., et al. (2007). Macromolecular biosynthesis: A key function of sleep. Physiological Genomics, 31, 441–457.PubMedCrossRefGoogle Scholar
  52. Marino, A., & Giotta, N. (2008). Cinacalcet, fetuin-A and interleukin-6. Nephrology, Dialysis, Transplantation, 23, 1461.Google Scholar
  53. Marschall, F. (1999). Wie beinflussen unterschiedliche dehnintensitaten kurzfristig die veranderung der bewegungsreichweite? (Effects of different stretch-intensity on the acute change of range of motion). Deutsche Zeitschrift fur Sportmedizin, 50, 5–9.Google Scholar
  54. Mattson, M. P. (2008). Hormesis defined. Ageing Research Reviews, 7, 1–7.PubMedCrossRefGoogle Scholar
  55. McGee, D. W., Bamberg, T., Vitukus, S. J. D., & McGhee, J. R. (1995). A synergistic relationship between TNF-α, IL-1β, and TGF-β1 on IL-6 secretion by the IEC-6 intestinal epithelial cell line. Immunology, 86, 6–11.PubMedPubMedCentralGoogle Scholar
  56. Melzack, R., & Katz, J. (Eds.). (1999). Pain measurements in persons with pain. London, UK: Chruchill Livingstone.Google Scholar
  57. Merskey, H., & Bogduk, N. (1994). Classification of chronic pain. Seattle, WA: IASP Press.Google Scholar
  58. Miles, M. P., & Clarkson, P. M. (1994). Exercise-induced muscle pain, soreness, and cramps. The Journal of Sports Medicine and Physical Fitness, 34, 203–216.PubMedGoogle Scholar
  59. Mujika, I., Chatard, J.-C., Busso, T., Geyssant, A., Barale, F., & Lacoste, L. (1995). The effects of training on performance in competitive swimming. Canadian Journal of Applied Physiology, 20, 395–406.PubMedCrossRefGoogle Scholar
  60. Muramatsu, T., Muraoka, T., Takeshita, D., Kawakami, Y., Hirano, Y., & Fukunaga, T. (2001). Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. Journal of Applied Physiology, 90, 1671–1678.PubMedCrossRefGoogle Scholar
  61. Nemet, D., Oh, Y., Kim, H. S., Hill, M. A., & Cooper, D. M. (2002). The effect of intense exercise onj inflammatory cytokines and growth mediators in adolescent boys. Pediatrics, 110, 681–689.PubMedCrossRefGoogle Scholar
  62. Newham, D. J., Mills, K. R., Quigley, B. M., & Edwards, R. H. T. (1983). Pain and fatigue after concentric and eccentric contractions. Clinical Science, 64, 55–62.PubMedCrossRefGoogle Scholar
  63. Noakes, T. D. (1987). Effect of exercise on serum enzyme activities in humans. Sports Medicine, 4, 245–267.PubMedCrossRefGoogle Scholar
  64. Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. The Journal of Physiology, 515, 287–291.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: Regulation, integration and adaption. Physiological Reviews, 80, 1055–1081.PubMedCrossRefGoogle Scholar
  66. Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: a critical update. The Journal of Clinical Investigation, 111, 1805–1812.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pizza, F. X., Koh, T. J., McGregor, S. J., & Brooks, S. V. (2002). Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. Journal of Applied Physiology, 92, 1873–1878.PubMedCrossRefGoogle Scholar
  68. Powers, S. K., Ji, L. L., Kavazis, A. N., & Jackson, M. J. (2011). Reactive oxygen species: Impact on skeletal muscle. Comprehensive Physiology, 1, 941–969.PubMedPubMedCentralGoogle Scholar
  69. Ramadori, G., Van Damme, J., Rieder, H., & Meyer Zum Buschenfelde, K. H. (1988). Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha. European Journal of Immunology, 18, 1259–1264.PubMedCrossRefGoogle Scholar
  70. Reimund, E. (1994). The free radical flux theory. Medical Hypotheses, 43, 231–232.PubMedCrossRefGoogle Scholar
  71. Scharf, M. T., Naidoo, N., Zimmerman, J. E., & Pack, A. I. (2008). The energy hypothesis of sleep. Progress in Neurobiology, 86, 264–280.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Schwarz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S., & Cooper, D. M. (1996). Acute effect of brief low- and high-intensity exercise on circulating IGF-I, II, and IGF binding protein-3 and its proteolysis in young heathy men. The Journal of Clinical Endocrinology and Metabolism, 81, 3492–3497.PubMedGoogle Scholar
  73. Silva, L. E., Valim, V., Pessanha, A. P. C., Myamoto, S., Jones, A., & Natour, J. (2008). Hydrotherapy versus conventional land-based exercise for the management of patients with osteoarthritis of the knee: A randomized clinical trial. Physical Therapy, 88, 12–21.PubMedCrossRefGoogle Scholar
  74. Smith, L. L. (1991). Acute inflammation: The underlying mechanism in delayed onset muscle sorenes? Medicine and Science in Sports and Exercise, 23, 542–551.PubMedGoogle Scholar
  75. Steptoe, A., Willemson, G., Owen, N., Flower, L., & Mohamed-Ali, V. (2001). Acute mental stress elicits delayed increases in circulating inflammatory cytokine levels. Clinical Science, 101, 185–192.PubMedCrossRefGoogle Scholar
  76. Streetz, K. L., Wustefeld, T., Klein, C., Manns, M. P., & Trautwein, C. (2001). Mediators of inflammation and acute phase response in the liver. Cellular and Molecular Biology (Noisy-le-Grand, France), 47, 661–673.Google Scholar
  77. Stromberg, D. D., & Wiederhielm, C. A. (1969). Viscoelastic description of a collagenase tissue in simple elongation. Journal of Applied Physiology, 26, 857–862.PubMedCrossRefGoogle Scholar
  78. Talag, T. S. (1973). Residual muscular soreness as influenced by concentric, eccentric and static contractions. Research Quarterly, 44, 458–469.PubMedGoogle Scholar
  79. Taylor, D. C., Dalton, J. D., Seaber, A. V., & Garrett, W. E. (1990). Viscoelastic properties of muscle-tendon units. The biomechanical effects of stretching. American Journal of Sports Medicine, 18, 300–309.PubMedCrossRefGoogle Scholar
  80. Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288, R345–R353.PubMedCrossRefGoogle Scholar
  81. Vasudevan, S. V. (1993). Impairment, disability and functional capacity assessment. New York: The Guildford Press.Google Scholar
  82. Verhagen, A. P., Cardoso, J. R., & Bierma-Zeinstra, S. M. A. (2012). Aquatic exercise and balneotherapy in musculoskeletal conditions. Best Practice & Research: Clinical Rheumatology, 26, 335–343.PubMedCrossRefGoogle Scholar
  83. Viidik, A. (1972). Simultaneous mechanical and light microscopic studies of collagen fibers. Z Anat Entwicklungsgeasch, 136, 204–212.CrossRefGoogle Scholar
  84. Vyazovskiy, V. V., & Harris, K. D. (2013). Sleep and the single neuron: The role of global slow oscillations in individual cell rest. Nature Reviews. Neuroscience, 14, 443–451.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang, T.-J., Belza, B., Thompson, F. E., Whitney, J. D., & Bennett, K. (2001). Effects of aquatic exercise on flexibility, strength and aerobic fitness in adults with osteoarthritis of the hip or knee. Journal of Advanced Nursing, 57, 141–152.CrossRefGoogle Scholar
  86. Warren, G. L., Lowe, D. A., & Armstrong, R. B. (1999). Measurement tools used in the study of eccentric contraction-induced injury. Sports Medicine, 27, 43–59.PubMedCrossRefGoogle Scholar
  87. Wyon, M., Felton, L., & Galloway, S. (2009). A comparison of 2 stretching modalities on lower-limb range of motion measurements in recreational dancers. Journal of Strength and Conditioning Research, 23, 2144–2148.PubMedCrossRefGoogle Scholar
  88. Wyon, M., Smith, A., & Koutedakis, Y. (2013). A comparison of strength and stretch interventions on active and passive ranges of movement in dancers: A randomized controlled trial. Journal of Strength and Conditioning Research, 27, 3053–3059.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nikos C. Apostolopoulos
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations