Dissociations Between System 1 and System 2

  • Mario GrazianoEmail author
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)


Calculation ability represents an extremely complex cognitive process. It has been understood to represent a multifactor skill, including verbal, spatial, memory, and executive function abilities. In this chapter, we will deal with it by calculation disturbances are analyzed. Specifically, evidence from brain-damaged patients indicates that deficits in mathematics can follow injury to either cerebral hemisphere, but that the nature of the impairment will differ depending upon the locus of the cerebral insult.


Acalculia Developmental dyscalculia Turner syndrome Double dissociation 


  1. Ansari, D. (2003). Atypical trajectories of number development: The case of Williams syndrome. London: University College of London, Institute of Child Health.Google Scholar
  2. Ansari, D., Donlan, C., Thomas, M. S. C., Ewing, S., Peen, T., & Karmiloff-Smith, A. (2003). What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 85, 50–62.CrossRefGoogle Scholar
  3. Ardila, A., & Rosselli, M. (1995). Spatial acalculia. International Journal of Neuroscience, 78, 177–184.CrossRefGoogle Scholar
  4. Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Miklebust (Ed.), Progress in Learning Disabilities (Vol. 5, pp. 129–146). New York: Grune and Stratton.Google Scholar
  5. Benson, D. F., & Denckla, M. B. (1969). Verbal paraphasias as a source of calculations disturbances. Archives of Neurology, 21, 96–102.CrossRefGoogle Scholar
  6. Berger, H. (1926). Uber Rechenstorunger bei Herderkraunkunger des Grosshirns. Arch. Psychiatr. Nervenkr., 78, 236–263.CrossRefGoogle Scholar
  7. Boller, F., & Grafman, J. (1983). Acalculia: Historical development and current significance. Brain and Cognition, 2, 205–223.CrossRefGoogle Scholar
  8. Burbaud, P., Camus, O., Guehl, D., Bioulac, B., Caillé, J. M., & Allard, M. (1999). A functional magnetic resonance imaging study of mental subtraction in human subjects. Neuroscience Letters, 273, 195–199.CrossRefGoogle Scholar
  9. Burbaud, P., Degreze, P., Lafon, P., Franconi, J. M., Bouligand, B., Bioulac, B., et al. (1995). Lateralization of prefrontal activation during internal mental calculation: A functional magnetic resonance imaging study. Journal of Neurophysiology, 74(5), 2194–2200.CrossRefGoogle Scholar
  10. Calabria, M., & Rossetti, Y. (2005). Interference between number processing and line bisection: A methodology. Neuropsychologia, 43, 779–783.CrossRefGoogle Scholar
  11. Cappelletti, M., & Cipolotti, L. (2006). Unconscious processing of Arabic numerals in unilateral neglect. Neuropsychologia, 44, 1999–2006.CrossRefGoogle Scholar
  12. Cavézian, C., Rossetti, Y., Danckert, J., d’Amato, T., Dalery, J., & Saoud, M. (2007). Exaggerated leftward bias in the mental number line of patients with schizophrenia. Brain and Cognition, 63, 85–90.CrossRefGoogle Scholar
  13. Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.CrossRefGoogle Scholar
  14. Cipolotti, L., Butterworth, B., & Denes, G. (1991). A specific deficit for numbers in a case of dense acalculia. Brain, 114, 2619–2637.CrossRefGoogle Scholar
  15. Cipolotti, L., Warrington, E. K., & Butterworth, B. (1995). Selective impairment in manipulating Arabic numerals. Cortex, 31, 73–86.CrossRefGoogle Scholar
  16. Clark, J. M., & Campbell, J. I. D. (1991). Integrated versus modular theories of number skills and acalculia. Brain and Cognition, 17, 204–239.CrossRefGoogle Scholar
  17. Cohen, L., & Dehaene, S. (1996). Cerebral networks for number processing. Evidence from a case of posterior callosal lesion. Neurocase, 2, 155–174.CrossRefGoogle Scholar
  18. Cohen, L., Dehaene, S., & Verstichel, P. (1994). Number words and number nonwords: A case of deep dyslexia extending to arabic numerals. Brain, 117, 267–279.CrossRefGoogle Scholar
  19. Cohn, R. (1971). Arithemtic and learning disabilities. In H. Myklebust (Ed.), Progress in learning disabilities. New York: Grune & Stratton.Google Scholar
  20. Collington, R., LeClerq, C., & Mahy, J. (1977). Etude de la semologie des troubles du calcul observes au cours des lesions corticales. Acta Neurologica Belgica, 77, 257–275.Google Scholar
  21. Dagenbach, D., & McCloskey, M. (1992). The organization of numberfacts in memory: Evidence from a brain-damaged patient. Brain and Cognition, 20, 345–366.CrossRefGoogle Scholar
  22. De Hevia, M. D., Girelli, L., & Vallar, G. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168, 254–264.CrossRefGoogle Scholar
  23. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  24. Dehaene, S. (2003). The neural basis of the weber-fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.CrossRefGoogle Scholar
  25. Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and updated edition. New York: Oxford University Press.Google Scholar
  26. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371–396.Google Scholar
  27. Dehaene, S., & Cohen, L. (1991). Two mental caculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29(11), 1045–1074.CrossRefGoogle Scholar
  28. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.Google Scholar
  29. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociations between gerstmann’s acalculia and subcortical acalculia. Cortex, 33, 219–250.CrossRefGoogle Scholar
  30. Dehaene, S., Naccache, L., Clec’H, G. L., Koechlin, E., Mueller, M., Dehaene- Lambertz, G., van de Moortele, P. F., & Bihan, D. L. (1998). Imaging unconscious priming. Nature, 395(6702), 597–600.Google Scholar
  31. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.CrossRefGoogle Scholar
  32. Dehaene, S., Spelke, E. S., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.CrossRefGoogle Scholar
  33. Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33, 697–710.CrossRefGoogle Scholar
  34. Delazer, M., Karner, E., Zamarian, L., Donnemiller, E., & Benke, T. (2005). Number processing in posterior cortical atrophy—A neuropsychological case study. Neuropsychologia, 44, 36–51.CrossRefGoogle Scholar
  35. Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–725.CrossRefGoogle Scholar
  36. Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetic achievement from neuropsychological performance: A longitudinal study. Cognition, 68, 63–70.CrossRefGoogle Scholar
  37. Ferro, J. M., & Botelho, M. A. S. (1980). Alexia for arithmetical signs: A cause of disturbed calculation. Cortex, 16, 175–180.CrossRefGoogle Scholar
  38. Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822–826.CrossRefGoogle Scholar
  39. Fisher, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.CrossRefGoogle Scholar
  40. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.CrossRefGoogle Scholar
  41. Galton, F. (1880). Visualised numerals. Nature, 21, 252–256.CrossRefGoogle Scholar
  42. Gazzaniga, M. S., & Hillyard, S. A. (1971). Language and speech capacity in the right hemisphere. Neuropsychologia, 9, 273–280.CrossRefGoogle Scholar
  43. Gazzaniga, M. S., & Smylie, C. E. (1984). Dissociation of language and cognition: A psychological profile of two disconnected hemispheres. Brain, 107, 145–153.CrossRefGoogle Scholar
  44. Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236–263.CrossRefGoogle Scholar
  45. Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, 87–95.CrossRefGoogle Scholar
  46. Ghatan, P. H., Hsieh, J. C., Petersson, K. M., Stone-Elander, S., & Ingvar, M. (1998). Coexistence of attention-based facilitation and inhibition in the human cortex. NeuroImage, 7, 23–29.CrossRefGoogle Scholar
  47. Gibbon, J. (1977). Scalar expectancy theory and weber’s law in animal timing. Psychological Review, 84, 279–335.CrossRefGoogle Scholar
  48. Goldstein, K. (1948). Language and language disturbances. New York: Grune and Stratton.Google Scholar
  49. Grafman, J. (1988). Acalculia. In F. Boller, J. Grafman, G. Rizzolatti, & H. Goodglass (Eds.), Handbook of neuropsychology (Vol. 1, pp. 121–136). Amsterdam: Elsevier.Google Scholar
  50. Grafman, J., Kampen, D., Rosenberg, J., Salazar, A. M., & Boller, F. (1989). The progressive breakdown of number processing and calculation ability: A case study. Cortex, 25, 121–133.CrossRefGoogle Scholar
  51. Hecaen, H., Angelerges, T., & Houllier, S. (1961). Les varietes cliniques des acalculies au cours des lesions retrorolandiques. Reviews Neurology, 105, 85–103.Google Scholar
  52. Henschen, S. E. (1925). Clinical and anatomical contributions on brain pathology. Archives of neurology and psychiatry, 13, 226–249.CrossRefGoogle Scholar
  53. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93–110.CrossRefGoogle Scholar
  54. Johnson, P. J., & Myklebust, H. R. (1967). Learning disabilities. New York: Grune & Stratton.Google Scholar
  55. Jong, B. M. D., van Zomeren, A. H., Willemsen, H. T. M., & Paans, A. M. J. (1996). Brain activity related to serial cognitive performance resembles circuitry of higher order motor control. Experimental Brain Research, 109, 136–140.CrossRefGoogle Scholar
  56. Karmiloff-Smith, A. (1998). Development itself is the key to understanding development disorders. Trends in Cognitive Sciences, 2, 389–398.CrossRefGoogle Scholar
  57. Laing, E., Hulme, C., Grant, J., & Karmiloff-Smith, A. (2001). Learning to read in Williams Syndrome: Looking beneath the surface of atypical reading development. Journal of Child Psychology and Psychiatry, 42, 729–739.CrossRefGoogle Scholar
  58. Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48, 657–661.CrossRefGoogle Scholar
  59. Lefevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 3, 284–306.CrossRefGoogle Scholar
  60. Lemer, C., Dehaene, S., Spelke, E. S., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–1958.CrossRefGoogle Scholar
  61. Lewandowsky, M., & Stadelmann, E. (1908). Über einen bemerkenswerten Fall von Hirnblutung und über Rechenstörungen bei Herderkrankung des Gehirns. Journal für Psychologie und Neurologie, 11, 249–265.Google Scholar
  62. Loftus, A. M., Nicholls, M. E. R., Mattingley, J. B., & Bradshaw, J. L. (2008). Left to right: Representational biases for numbers and the effect of visuomotor adaptation. Cognition, 3, 1048–1058.CrossRefGoogle Scholar
  63. Luria, A. R. (1973). The working brain. New York: Basic Books.Google Scholar
  64. Luria, A. R. (1976). Basic problems in neurolinguistics. New York: Mouton.CrossRefGoogle Scholar
  65. McCloskey, M., Aliminosa, D., & Sokol, S. M. (1991). Facts, rules, and procedures in normal calculation: Evidence from multiple single-patient studies of impaired arithmetic facts retrieval. Brain and Cognition, 17, 154–203.CrossRefGoogle Scholar
  66. McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4, 171–196.CrossRefGoogle Scholar
  67. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage, 12, 357–365.CrossRefGoogle Scholar
  68. Molko, N., Cachia, A., Rivière, D., Mangin, J.-F., Bruandet, M., Bihan, D. L., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscaculia of genetic origin. Neuron, 40(4), 847–858.CrossRefGoogle Scholar
  69. Naccache, L., & Dehaene, S. (2001). The priming methode: Imaging unconscious repetition priming reveals an abstract representation of number in parietal lobes. Cerebral Cortex, 11, 966–974.CrossRefGoogle Scholar
  70. Paterson, S. J., Brown, J. H., Gsodl, M. K., Johnson, M. H., & Karmiloff-Smith, A. (1999). Cognitive modularity and genetic disorders. Science, 286, 2355–2358.CrossRefGoogle Scholar
  71. Paterson, S. (2001). Language and number in down syndrome: The complex developmental trajectory from infancy to adulthood. Down Syndrome Research and Pratice, 7, 79–86.CrossRefGoogle Scholar
  72. Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2006). Are numerical impairments syndrome specific? Evidence from Williams syndrome and down’s syndrome. Journal of Child Psychology and Psychiatry, 47, 190–204.CrossRefGoogle Scholar
  73. Pesenti, M., Seron, X., & van den Linden, M. (1994). Selective impairment as evidence for mental organisation of number facts: Bb, a case of preserved subtraction? Cortex, 30, 661–671.CrossRefGoogle Scholar
  74. Pesenti, M., Thioux, M., Seron, X., & de Volder, A. (2000). Neuroanatomical substrates of arabic number processing, numerical comparison and simple addition: A pet study. Journal of Cognitive Neuroscience, 12, 461–479.CrossRefGoogle Scholar
  75. Piazza, M., Izard, V., Pinel, P., Bihan, D. L., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.CrossRefGoogle Scholar
  76. Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? NeuroImage, 15, 435–446.CrossRefGoogle Scholar
  77. Pinel, P., Dehaene, S., Rivière, D., & Bihan, D. L. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013–1026.CrossRefGoogle Scholar
  78. Pinel, P., Piazza, M., Bihan, D. L., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 983–993.CrossRefGoogle Scholar
  79. Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18, 680–688.CrossRefGoogle Scholar
  80. Rivera, S. M., Menon, V., White, C. D., Glaser, B., & Reiss, A. L. (2002). Functional brain activation during arithmetic processing in females with fragile x syndrome is related to fmr1 protein expression. Human Brain Mapping, 16, 206–218.CrossRefGoogle Scholar
  81. Roland, P. E., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53, 1219–1243.CrossRefGoogle Scholar
  82. Rosselli, M., & Ardila, A. (1989). Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia, 27, 607–618.CrossRefGoogle Scholar
  83. Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Is action the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological Science, 15, 426–430.CrossRefGoogle Scholar
  84. Rueckert, L., Lange, N., Partiot, A., Appollonio, I., Litvar, I., Bihan, D. L., et al. (1996). Visualizing cortical activation during mental calculation with funtional mri. NeuroImage, 3, 97–103.CrossRefGoogle Scholar
  85. Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113–129.CrossRefGoogle Scholar
  86. Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J. A. (1992). Images of numbers, or when 98 is upper left and 6 sky blue. Cognition, 44, 159–196.CrossRefGoogle Scholar
  87. Seymour, S. E., Reuter-Lorenz, P. A., & Gazzaniga, M. S. (1994). The disconnection syndrome: Basic findings confirmed. Brain, 117, 105–115.CrossRefGoogle Scholar
  88. Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L., & Dehaene, S. (2002). Topographical layout of eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.CrossRefGoogle Scholar
  89. Stanescu-Cosson, R., Pinel, P., van de Moortele, P., Bihan, D. L., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size calculation. Brain, 123, 2240–2255.CrossRefGoogle Scholar
  90. Temple, C. (1991). Procedural dyscalculia and number fact dyscalculia: Double dissociation in developmental dyscalculia. Cognitive Neuropsychology, 8, 155–176.CrossRefGoogle Scholar
  91. Temple, C. M., & Carney, R. (1996). Reading skills in children with Turner’s syndrome: An analysis of hyperplexia. Cortex, 32, 335–345.CrossRefGoogle Scholar
  92. Temple, C. M., & Marriot, A. J. (1998). Arithmetical Ability and Disability in Turner’s syndrome: a cognitive neuropsychological analysis. Developmental Neuropsychology, 14, 47–67.CrossRefGoogle Scholar
  93. Turner, H. (1938). A syndrome of infantilism, congenital webbed neck and cubitus valgus. Endocrinology, 28, 566–574.CrossRefGoogle Scholar
  94. van Harskamp, N. J., Rudge, P., & Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri? Neuropsychologia, 40, 1786–1793.CrossRefGoogle Scholar
  95. Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7(11), 483–488.CrossRefGoogle Scholar
  96. Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quaterly Journal of Experimental Psychology, 34, 31–51.CrossRefGoogle Scholar
  97. Zamarian, L., Egger, C., & Delazer, M. (2007). The mental representation of ordered sequences in visual neglect. Cortex, 43, 542–550.CrossRefGoogle Scholar
  98. Zorzi, M., Priftis, K., & Umilta, C. (2002). Neglects disrupts the mental number line. Nature, 417, 138–139.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Cognitive SciencesUniversity of MessinaMessinaItaly

Personalised recommendations