The System 1

  • Mario Graziano
Part of the SpringerBriefs in Philosophy book series (BRIEFSPHILOSOPH)


This chapter is devoted to the discovery of the core abilities underlying human numerical cognition. Neuroscientists hypothesises that human beings are born with a “number sense” that they share with other animals and that this instinct is the expression of the functioning of a “mental organ”, a set of brain circuits that exist also in other species. According to neuroscientist Stanislas Dehaene, this “mental organ” works as an accumulator, namely a kind of approximate counting device that allows us to perceive, store, and compare numerical quantities.


Numerical cognition Innate knowledge Accumulator Number sense 


  1. Antell, S. E., & Keating, L. E. (1983). Perception of numerical invariance by neonates. Child Development, 54, 695–701.CrossRefGoogle Scholar
  2. Beran, M. J., & Beran, M. M. (2004). Chimpanzees remember the results of onebyone addition of food items to sets over extended time periods. Psychological Science, 15, 94–99.CrossRefGoogle Scholar
  3. Bijeljac-Babic, R., Bertoncini, J., & Mehler, J. (1993). How do 4-day-old infants categorize multisyllabic utterances? Developmental Psychology, 29(4), 711–721.CrossRefGoogle Scholar
  4. Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.CrossRefGoogle Scholar
  5. Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee. Journal of Comparative Psychology, 103(1), 23–31.CrossRefGoogle Scholar
  6. Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83, 223–240.CrossRefGoogle Scholar
  7. Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746–749.CrossRefGoogle Scholar
  8. Brannon, E. M., & Terrace, H. S. (2000). Representation of the numerosities 1-9 by rhesus macaques (macaca mulatta). Journal of Experimental Psychology: AnimalBehavior Processes, 26(1), 31–49.Google Scholar
  9. Cantlon, J. F., & Brannon, E. M. (2006). The effect of heterogeneity on numerical ordering in rhesus monkeys. Infancy, 9, 173–189.CrossRefGoogle Scholar
  10. Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408–411.CrossRefGoogle Scholar
  11. Cohen, L. B., & Marks, K. (2002). How infants process addition and subtraction events. Developmental Science, 5(2), 186–201.CrossRefGoogle Scholar
  12. Davis, H., & Albert, M. (1987). Failure to transfert or train a numerical discrimination using sequential visual stimuli in rats. Bulletin of the Psychonomic Society, 25, 472–474.CrossRefGoogle Scholar
  13. Davis, H., & Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence and a new research agenda. Behavioural Brain Science, 11, 561–579.CrossRefGoogle Scholar
  14. Dehaene, S. (1997). The number sense. New York, Cambridge (UK): Oxford University Press, Penguin Press.Google Scholar
  15. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  16. Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and updated edition. New York: Oxford University Press.Google Scholar
  17. Devlin, K. (2005). The math instinct. Why you’re a mathematical genius. New York: Thunder’s Mouth press.Google Scholar
  18. Emmerton, J., & Delius, J.D. (1993). Beyond sensation: Visual cognition in pigeons. In H. P. Zeigler & H. Bischof (Eds.), Vision, brain, and behavior in birds (pp. 377–390). Cambridge, MA: MIT Press.Google Scholar
  19. Emmerton, J., Lohmann, A., & Niemann, J. (1997). Pigeon’s serial ordering of numerosity with visual arrays. Animal Learning and Behavior, 25, 234–244.CrossRefGoogle Scholar
  20. Feigenson, L. (2005). A double-dissociation in infants’ representations of object arrays. Cognition, 95, 37–48.CrossRefGoogle Scholar
  21. Feigenson, L., Carey, S., & Hauser, M. D. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150–156.CrossRefGoogle Scholar
  22. Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.CrossRefGoogle Scholar
  23. Fernandes, D. M., & Church, R. H. (1982). Discrimination of the number of sequential events by rats. Animal Learning and Behavior, 10(2), 171–176.CrossRefGoogle Scholar
  24. Flombaum, J. I., Junge, J. A., & Hauser, M. D. (2005). Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition, 97, 315–325.CrossRefGoogle Scholar
  25. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.CrossRefGoogle Scholar
  26. Hanus, D., & Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Journal of Comparative Psychology, 121(3), 241–249.CrossRefGoogle Scholar
  27. Hauser, M. D., & Spelke, E. S. (2004). Evolutionary and developmental foundations of human knowledge: A case study of mathematics. In M. Gazzaniga (Ed.), The cognitive neurosciences (Vol. 3). Cambridge: MIT Press.Google Scholar
  28. Jaakkola, K., Fellner, W., Erb, L., Rodriguez, A. M., & Guarino, E. (2005). Understanding of the concept of numerically “less” by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 296–303.CrossRefGoogle Scholar
  29. Jordan, K. E., & Brannon, E. M. (2006). Weber’s law influences numerical representations in rhesus macaques (Macaca mulatta). Animal Cognition, 9, 159–172.CrossRefGoogle Scholar
  30. Kilian, A., Yaman, S., Fersen, L., & Gunturkun, O. (2003). A bottlenose dolphin (Tursiops truncates) discriminates visual stimuli differing in numerosity. Learning and Behaviour, 31, 133–142.CrossRefGoogle Scholar
  31. Kilian, A., Von Fersen, L., & Güntürkün, O. (2005). Left hemispheric advantage for numerical abilities in the bottlenose dolphin. Behavioural Processes, 68, 179–184.CrossRefGoogle Scholar
  32. Kobayashi, T., Hiraki, K., & Hasegawa, T. (2005). Auditory-visual intermodal matching of small numerosities in 6-month-old infants. Developmental Science, 8, 409–419.CrossRefGoogle Scholar
  33. Leslie, A., Xu, F., Tremoulet, P., & Scholl, B. (1998). Indexing and the object concept: Developing what and where systems. Trends in Cognitive Science, 2(1), 10–18.CrossRefGoogle Scholar
  34. Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14(5), 396–401.CrossRefGoogle Scholar
  35. Lyon, B. E. (2003). Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature, 422, 495–499.CrossRefGoogle Scholar
  36. Marler, P., & Tamura, M. (1962). Song dialects in three populations of Whitecrowned sparrows. Condor, 64, 368–377.CrossRefGoogle Scholar
  37. McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in the contests between groups of female lions, Panther leo. Animal Behaviour, 47, 379–387.CrossRefGoogle Scholar
  38. McCrink, K., & Wynn, K. (2004). Large number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776–781.CrossRefGoogle Scholar
  39. Mechner, F. (1958). Probability relations within response sequences under ratio reinforcement. Journal of the Experimental Analysis of Behaviour, 1, 109–122.CrossRefGoogle Scholar
  40. Mechner, F., & Guevrekian, L. (1962). Effects of deprivation upon counting and timing in rats. Journal of the Experimental Analysis of Behavior, 5(4), 463–466.CrossRefGoogle Scholar
  41. Meck, W. H., & Church, R. M. (1984). Simultaneous temporal processing. Journal of Experimental Psychology: Animal Behavior Processes, 10(1), 1–29.Google Scholar
  42. Moore, D., Benenson, J., Reznick, J. S., Peterson, M., & Kagan, J. (1987). Effect of auditory numerical information on infants’ looking behavior: Contradictory evidence. Developmental Psychology, 23, 665–670.CrossRefGoogle Scholar
  43. Pepperberg, I. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.CrossRefGoogle Scholar
  44. Piaget, J. (1952). The child’s conception of number. New York: Norton.Google Scholar
  45. Piazza, M., Izard, V., Pinel, P., Bihan, D. L., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.CrossRefGoogle Scholar
  46. Platt, J. R., & Johnson, D. M. (1971). Localization of position within a homogeneous behaviour chain: Effects of error contingencies. Learning and Motivation, 2, 386–414.CrossRefGoogle Scholar
  47. Robins, A., Lippolis, G., Bisazza, A., Vallortigara, G., & Rogers, L. J. (1998). Lateralized agonistic responses and hind-limb use in toads. Animal Behaviour, 56, 875–881.CrossRefGoogle Scholar
  48. Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental numerical competence in 5-day-old domestic chicks: Identification of ordinal position. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 21–31.Google Scholar
  49. Rumbaugh, D. M., Savage-Rumbaugh, S., & Hegel, M. T. (1987). Summation in the chimpanzee (pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 13, 107–115.Google Scholar
  50. Santos, L. R., Barnes, J. L., & Mahajan, N. (2005). Expectations about numerical events in four lemur species. Animal Cognition, 8, 253–262.CrossRefGoogle Scholar
  51. Simon, T. J. (1999). The foundations of numerical thinking in a brain without numbers. Trends in Cognitive Sciences, 3(10), 363–364.CrossRefGoogle Scholar
  52. Spelke, E. S., Kestenbaum, R., Simons, D. J., & Wein, D. (1995). Spatio-temporal continuity, smoothness of motion and object identity in infancy. British Journal of Developmental Psychology, 13, 113–142.CrossRefGoogle Scholar
  53. Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.CrossRefGoogle Scholar
  54. Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179–181.CrossRefGoogle Scholar
  55. Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97–128.CrossRefGoogle Scholar
  56. Sulkowski, G. M., & Hauser, M. D. (2001). Can rhesus monkeys spontaneously substract? Cognition, 79, 239–262.CrossRefGoogle Scholar
  57. Uller, C., Hauser, M. D., & Carey, S. (2001). Spontaneous representation of number in cotton-top tamarins. Journal of Comparative Psychology, 115, 1–10.CrossRefGoogle Scholar
  58. Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in a species of basal vertebrate. Animal Cognition, 6, 105–112.CrossRefGoogle Scholar
  59. Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range, location, or rank for wild chimpanzees? Animal Behaviour, 61, 1203–1216.CrossRefGoogle Scholar
  60. Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 8, 173–181.CrossRefGoogle Scholar
  61. Woodruff, G., & Premack, D. (1981). Primative (sic) mathematical concepts in the chimpanzee: Proportionality and numerosity. Nature, 293, 568–570.CrossRefGoogle Scholar
  62. Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.CrossRefGoogle Scholar
  63. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.CrossRefGoogle Scholar
  64. Wynn, K., Bloom, P., & Chiang, W. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55–B62.CrossRefGoogle Scholar
  65. Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25, 103–108.CrossRefGoogle Scholar
  66. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, 1–11.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Cognitive SciencesUniversity of MessinaMessinaItaly

Personalised recommendations