Topological Quantum Matter pp 35-50 | Cite as
Response Theory and Symmetry Protected Topological Phases
Chapter
First Online:
Abstract
The topologically ordered phases, discussed in the last chapter, are the fundamental zero-temperature phases—if you allow for arbitrary changes of your system (i.e., the Hamiltonian), you can continuously interpolate between all other phases. But this is a too restrictive view and would make us miss important phase differences, as between solids and liquids. In many situations there are symmetries that all physically realizable perturbations, at least on long length scales, uphold. In those situations it is natural to consider what the possible phases are if we restrict ourselves to systems with a certain symmetry, i.e., symmetry protected phases.
References
- 1.A. Chan, T.L. Hughes, S. Ryu, E. Fradkin, Phys. Rev. B 87, 085132 (2013)ADSCrossRefGoogle Scholar
- 2.X.G. Wen, A. Zee, Phys. Rev. B 46, 2290 (1992a)ADSCrossRefGoogle Scholar
- 3.K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)Google Scholar
- 4.Q. Niu, D.J. Thouless, Y.-S. Wu, Phys. Rev. B 31, 3372 (1985)ADSMathSciNetCrossRefGoogle Scholar
- 5.R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)ADSCrossRefGoogle Scholar
- 6.D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, J. Phys. Rev. Lett. 49, 405 (1982). https://doi.org/10.1103/PhysRevLett.49.405
- 7.J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett. 51, 51 (1983). https://doi.org/10.1103/PhysRevLett.51.51
- 8.M. Kohmoto, Anna. Phys. 160, 343 (1985). https://doi.org/10.1016/0003-4916(85)90148-4ADSMathSciNetCrossRefGoogle Scholar
- 9.S. Ryu, J.E. Moore, A.W.W. Ludwig, Phys. Rev. B 85, 045104 (2012). https://doi.org/10.1103/PhysRevB.85.045104ADSCrossRefGoogle Scholar
- 10.C. Hoyos, D.T. Son, Phys. Rev. Lett. 108, 066805 (2012). https://doi.org/10.1103/PhysRevLett.108.066805
- 11.X.G. Wen, A. Zee, Phys. Rev. Lett. 69, 953 (1992b). https://doi.org/10.1103/PhysRevLett.69.953
- 12.T. Kvorning, T.H. Hansson, A. Quelle, C.M. Smith, Phys. Rev. Lett. 120, 217002 (2018). https://doi.org/10.1103/PhysRevLett.120.217002
- 13.S. Moroz, A. Prem, V. Gurarie, L. Radzihovsky, Phys. Rev. B 95, 014508 (2017). https://doi.org/10.1103/PhysRevB.95.014508ADSCrossRefGoogle Scholar
- 14.A. Kitaev, Ann. Phys. 321, 2 (2006). J. Spec. Issue. https://doi.org/10.1016/j.aop.2005.10.005
- 15.H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, Y. Haga, K. Maezawa, Phys. Rev. Lett. 80, 3129 (1998)ADSCrossRefGoogle Scholar
- 16.M. Nishiyama, Y. Inada, G.-Q. Zheng, Phys. Rev. Lett. 98, 047002 (2007)ADSCrossRefGoogle Scholar
- 17.Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn 81, 011009 (2012)ADSCrossRefGoogle Scholar
- 18.M.H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W. Hanke, J. Goryo, R. Thomale, M. Sigrist, Phys. Rev. B 89, 020509 (2014)ADSCrossRefGoogle Scholar
- 19.Y. Nishikubo, K. Kudo, M. Nohara, J. Phys. Soc. Jpn 80, 055002 (2011)ADSCrossRefGoogle Scholar
- 20.M.L. Kiesel, C. Platt, W. Hanke, D.A. Abanin, R. Thomale, Phys. Rev. B 86, 020507 (2012)ADSCrossRefGoogle Scholar
- 21.A.M. Black-Schaffer, C. Honerkamp, J. Phys. Condens. Matter 26, 423201 (2014)CrossRefGoogle Scholar
- 22.R. Nandkishore, L.S. Levitov, A.V. Chubukov, Nat. Phys. 8, 158 (2012)CrossRefGoogle Scholar
- 23.M.L. Kiesel, C. Platt, W. Hanke, R. Thomale, Phys. Rev. Lett. 111, 097001 (2013)ADSCrossRefGoogle Scholar
- 24.L. Keldysh, Soviet. J. Exp. Theor. Phys. Lett. 29, 658 (1979)Google Scholar
- 25.J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno 331, 186 (2011)Google Scholar
- 26.X. Cai, Y.A. Ying, N.E. Staley, Y. Xin, D. Fobes, T.J. Liu, Z.Q. Mao, Y. Liu, Phys. Rev. B 87, 081104 (2013)ADSCrossRefGoogle Scholar
- 27.D. Robbes, Sens. Actuators Phys. 129, 86 (2006), eMSA (2004)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2018