The Essential of Bone Histology for Forensic Applications

  • Giovanni Francesco SpatolaEmail author
  • Maria Laura Uzzo
  • Antonietta Lanzarone
  • Donatella Piscionieri
  • Daniele Daricello
  • Stefania Zerbo


This chapter illustrates characteristics of bone, as specialized connective tissue, taking into account fundamentals of histology for forensic purposes (Cells of Bone, Concentric or Haversian system, Systems of internal and external circumferential lamellae, Bone Remodeling).


Bone Cells Histology Structure Remodeling 

Further Readings

  1. Abbott S, Trinkaus E, Burr DB (1996) Dynamic bone remodeling in later Pleistocene fossil hominids. Am J Phys Anthropol 99(4):585–601PubMedCrossRefGoogle Scholar
  2. Abou-Arab M, Thomsen JL, Frohlich B, Lynnerup N (1995) Technical note: histological staining of secondary osteons. Am J Phys Anthropol 98(3):391–394PubMedCrossRefGoogle Scholar
  3. Baccino E, Ubelaker DH, Hayek LA, Zerilli A (1999) Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 44(5):931–936PubMedCrossRefGoogle Scholar
  4. Báca V, Kachlík D, Horák Z, Stingl J (2007) The course of osteons in the compact bone of the human proximal femur with clinical and biomechanical significance. Surg Radiol Anat 29(3):201–207PubMedCrossRefGoogle Scholar
  5. Boela LW, Boldsenb JL, Melsena F (2007) Double lamellae in trabecular osteons: towards a new method for age estimation by bone microscopy. Homo 58:269–277CrossRefGoogle Scholar
  6. Britz HM, Thomas CD, Clement JG, Cooper DM (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45(1):77–83. Scholar
  7. Cho H, Stout SD, Madsen RW, Streeter MA (2002) Population-specific histological age-estimating method: a model for known African-American and European-American skeletal remains. J Forensic Sci 47(1):12–18PubMedCrossRefGoogle Scholar
  8. Clement JG (2005) The Melbourne Femur Collection: the gift of tissue underpins important medical and forensic research. VIFM Rev 3:7–11Google Scholar
  9. Dillon S, Cunningham C, Felts P (2016) Quantification of osteon morphology using geometric histomorphometrics. J Forensic Sci 61(2):402–408. Scholar
  10. Ericksen MF (1991) Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol 84(2):171–179PubMedCrossRefGoogle Scholar
  11. Ericksen MF (1979) Aging changes in the medullary cavity of the proximal femur in American Blacks and Whites. Am J Phys Anthropol 51(4):563–569PubMedCrossRefGoogle Scholar
  12. Ferretti A, Cardini A, Crampton JS, Serpagli E, Sheets HD, Štorch P (2013) Rings without a lord? Enigmatic fossils from the lower Palaeozoic of Bohemia and the Carnic Alps. Lethaia 46(2):211–222CrossRefGoogle Scholar
  13. Franklin D (2010) Forensic age estimation in human skeletal remains: current concepts and future directions. Leg Med (Tokyo) 12(1):1–7. Scholar
  14. Frost HM (1987) Secondary osteon population densities: an algorithm for determining mean bone tissue age. Yearbook Phys Anthropol 30:221–238CrossRefGoogle Scholar
  15. Frost HM (1987) Secondary osteon population densities: an algorithm for. Estimating the missing osteons. Yearbook Phys Anthropol 30:239–254CrossRefGoogle Scholar
  16. Goldman HM, Bromage TG, Thomas CD, Clement JG (2003) Preferred collagen fiber orientation in the human mid-shaft femur. Anat Rec A Discov Mol Cell Evol Biol 272(1):434–445PubMedCrossRefGoogle Scholar
  17. Gundersen HJ, Bendtsen TF, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sørensen FB, Vesterby A et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96(5):379–394PubMedCrossRefGoogle Scholar
  18. Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52(2):249–263PubMedCrossRefGoogle Scholar
  19. Katzenberg MA, Saunders SR, Robling AG, Stout SD (2008) Histomorphometry of human cortical bone: applications to age estimation. In: Biological anthropology of the human skeleton, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  20. Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–163PubMedCrossRefGoogle Scholar
  21. Keough N, L’Abbé EN, Steyn M (2009) The evaluation of age-related histomorphometric variables in a cadaver sample of lower socioeconomic status: implications for estimating age at death. Forensic Sci Int 191(1–3):114.e1–114.e6. Scholar
  22. Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimating age at death in human cortical bone. Am J Phys Anthropol 49(4):545–546PubMedCrossRefGoogle Scholar
  23. Konigsberg LW, Frankenberg SR (1992) Estimation of age structure in anthropological demography. Am J Phys Anthropol 89(2):235–256PubMedCrossRefGoogle Scholar
  24. Kragstrup J, Melsen F, Mosekilde L (1983–1984) Thickness of bone formed at remodeling sites in normal human iliac trabecular bone: variations with age and sex. Metab Bone Dis Relat Res 5(1):17–21PubMedCrossRefGoogle Scholar
  25. Laitman JT, Albertine KH (2015) The anatomical record by the numbers: seeing anatomy through the lens of mathematics and geometry. Anat Rec (Hoboken) 298(1):1–2. Scholar
  26. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68(1):15–28PubMedCrossRefGoogle Scholar
  27. Lynnerup N, Thomsen JL, Frohlich B (1998) Intra- and inter-observer variation in histological criteria used in age at death determination based on femoral cortical bone. Forensic Sci Int 91(3):219–230PubMedCrossRefGoogle Scholar
  28. Lynnerup N, Frohlich B, Thomsen JL (2006) Assessment of age at death by microscopy: unbiased quantification of secondary osteons in femoral cross sections. Forensic Sci Int 159(Suppl 1):S100–S103PubMedCrossRefGoogle Scholar
  29. Maat GJR, Van Den Bos RPM, Aarents MJ (2001) Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s ‘rapid manual method. J Osteoarcheol 11:366–374CrossRefGoogle Scholar
  30. Maat GJR, Aarents MJ, Nagelkerke NJD (2005) Age prediction from bone replacement: remodeling of circumferential lamellar bone tissue in the anterior cortex of the femoral shaft of the present Dutch population. Barge’s Anthropologica, Leiden University Medical Center, LeidenGoogle Scholar
  31. Maat GJ, Maes A, Aarents MJ, Nagelkerke NJ (2006) Histological age prediction from the femur in a contemporary Dutch sample. The decrease of nonremodeled bone in the anterior cortex. J Forensic Sci 51(2):230–237PubMedCrossRefGoogle Scholar
  32. Martrille L, Irinopoulou T, Bruneval P, Baccino E, Fornes P (2009) Age at death estimation in adults by computer-assisted histomorphometry of decalcified femur cortex. J Forensic Sci 54(6):1231–1237. Scholar
  33. Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203(1–3):34–43. Scholar
  34. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610PubMedCrossRefGoogle Scholar
  35. Pfeiffer S, Lazenby R, Chiang J (1995) Brief communication: cortical remodeling data are affected by sampling location. Am J Phys Anthropol 96(1):89–92PubMedCrossRefGoogle Scholar
  36. Pratte DG, Pfeiffer S (1999) Histological age estimation of a cadaveral sample of diverse origins. Can Soc Forensic Sci J 32(4):155–167CrossRefGoogle Scholar
  37. Stout SD, Paine RR (1992) Histological age estimation using rib and clavicle. Am J Phys Anthropol 87:11–15CrossRefGoogle Scholar
  38. Stout SD, Gehlert SJ (1980) The relative accuracy and reliability of histological aging methods. Forensic Sci Int 15(3):181–190PubMedCrossRefGoogle Scholar
  39. Stout SD, Stanley SC (1991) Percent osteonal bone versus osteon counts: the variable of choice for estimating age at death. Am J Phys Anthropol 86(4):515–519PubMedCrossRefGoogle Scholar
  40. Stout SD, Saunders SR, Katzenberg MA (1992) Methods of determining age at death using bone microstructures. In: Skeletal biology of past peoples: research methods. Wiley-Liss, Inc, New York, pp 21–35Google Scholar
  41. Thomas CDL, Stein MS, Feik SA, Wark JD, Clement JG (2000) Determination of age at death using combined morphology and histology of the femur. J Anat 196(Pt 3):463–471PubMedPubMedCentralCrossRefGoogle Scholar
  42. Thomas CDL, Cooper DML, Clement JG, Peele AG, Hannah K (2007) Intra-osteon distribution of osteocyte lacunae in human cortical bone assessed by synchrotron radiation micro-CT. Australas Phys Eng Sci Med 30(4):433Google Scholar
  43. Watanabe Y, Konishi M, Shimada M, Ohara H, Iwamoto S (1998) Estimation of age from the femur of Japanese cadavers. Forensic Sci Int 98(1–2):55–65PubMedCrossRefGoogle Scholar
  44. Yoshino M, Imaizumi K, Miyasaka S, Seta S (1994) Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int 64(2–3):191–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Giovanni Francesco Spatola
    • 1
    Email author
  • Maria Laura Uzzo
    • 1
  • Antonietta Lanzarone
    • 2
  • Donatella Piscionieri
    • 2
  • Daniele Daricello
    • 2
  • Stefania Zerbo
    • 2
  1. 1.Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND)Unit of Histology and Embryology, University of PalermoPalermoItaly
  2. 2.Department for Health Promotion, Maternal and Child CareUniversity of PalermoPalermoItaly

Personalised recommendations