Advertisement

Synthesis of Metal Nanomaterials with Chemical and Physical Effects of Ultrasound and Acoustic Cavitation

  • Kenji Okitsu
  • Francesca Cavalieri
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Six synthesis techniques using ultrasound and acoustic bubbles are introduced. As a technique using chemical effects of acoustic bubbles which comprise high-temperature and high-pressure conditions, (1) a pyrolysis technique (pyrolysis of a volatile metal precursor in organic solvent) and (2) a reduction technique (reduction of metal precursor in water) are described for the synthesis of metal nanoparticles. Furthermore, as a technique using or relating physical effects of ultrasound and acoustic bubbles, (3) ultrasound-assisted, (4) sonomechanical-assisted metal displacement reduction, (5) sonoelectrochemical, and (6) ultrasound spray pyrolysis techniques are introduced. These synthetic techniques will affect the characteristics of the metal nanoparticles and nanomaterials synthesized.

Keywords

Pyrolysis Reduction Chemical and physical effect Metal nanoparticle Metal nanomaterial 

References

  1. 1.
    K.S. Suslick, S.-B. Choe, A.A. Cichowlas, M.W. Grinstaff, Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)CrossRefGoogle Scholar
  2. 2.
    K.S. Suslick, M. Fang, T. Hyeon, Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960–11961 (1996)CrossRefGoogle Scholar
  3. 3.
    K.S. Suslick, T. Hyeon, M. Fang, Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem. Mater. 8, 2172–2179 (1996)CrossRefGoogle Scholar
  4. 4.
    A. Comazzi, C. Pirola, M. Longhi, C.L.M. Bianchi, K.S. Suslick, Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: sonochemical synthesis and bench-scale experimental tests. Ultrason. Sonochem. 34, 774–780 (2017)CrossRefPubMedGoogle Scholar
  5. 5.
    X. Cao, Y. Koltypin, R. Prozorov, G. Kataby, A. Gedanken, Preparation of amorphous Fe2O3 powder with different particle sizes. J. Mater. Chem. 7, 2447–2451 (1997)CrossRefGoogle Scholar
  6. 6.
    N. Enomoto, S. Hirata, M. Inada, K. Hayashi, Crystallization behavior of iron-based amorphous nanoparticles prepared sonochemically. Ultrason. Sonochem. 35, 563–568 (2017)CrossRefPubMedGoogle Scholar
  7. 7.
    S.A. Yeung, R. Hobson, S. Biggs, F. Grieser, Formation of gold sols using ultrasound. J. Chem. Soc. Chem. Commun. 1993, 378–379 (1993)CrossRefGoogle Scholar
  8. 8.
    Y. Nagata, Y. Mizukoshi, K. Okitsu, Y. Maeda, Sonochemical formation of gold particles in aqueous solution. Radat. Res. 146, 333 (1996)CrossRefGoogle Scholar
  9. 9.
    R.A. Caruso, M. Ashokkumar, F. Grieser, Sonochemical formation of gold sols. Langmuir 18, 7831 (2002)CrossRefGoogle Scholar
  10. 10.
    K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Y. Yoo, Sonolytic Control of rate of Gold(III) reduction and size of formed gold nanoparticles in an aqueous solution: relation between reduction rates and sizes of formed nanoparticles. Bull. Chem. Soc. Jpn. 75, 2289 (2002)CrossRefGoogle Scholar
  11. 11.
    K. Okitsu, I. Kurisaka, B. Nanzai, N. Takenaka, H. Bandow, Sonochemistry of NaAuCl4 aqueous alcohol solutions with C3–C6 alcohols under a noble gas atmosphere. Ultrason. Sonochem. 41, 397–403 (2018)CrossRefPubMedGoogle Scholar
  12. 12.
    K. Okitsu, H. Bandow, Y. Maeda, Y. Nagata, Sonochemical preparation of ultrafine palladium particles. Chem. Mater. 8, 315 (1996)CrossRefGoogle Scholar
  13. 13.
    K. Okitsu, Y. Mizukoshi, H. Bandow, Y. Maeda, T. Yamamoto, Y. Nagata, Formation of noble metal particles by ultrasonic irradiation. Ultrason. Sonochem. 3, S249 (1996)CrossRefGoogle Scholar
  14. 14.
    K. Okitsu, M. Ashokkumar, F. Grieser, Sonochemical synthesis of gold nanoparticles in water: effects of ultrasound frequency. J. Phys. Chem. B 109, 20673 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y. Maeda, Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B 104, 6028–6032 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Nagata, Y. Watanabe, S. Fujita, T. Dohmaru, S. Taniguchi, Formation of colloidal silver in water by ultrasonic irradiation. J. Chem. Soc. Chem. Commun. 1992, 1620–1622 (1992)CrossRefGoogle Scholar
  17. 17.
    K. Okitsu, Y. Mizukoshi, H. Bandow, T.A. Yamamoto, Y. Nagata, Y. Maeda, Synthesis of palladium nano-particles with interstitial carbon by sonochemical reduction of tetrachloropalladate(II) in aqueous solution. J. Phys. Chem. B 101, 5470–5472 (1997)CrossRefGoogle Scholar
  18. 18.
    K. Okitsu, M. Murakami, S. Tanabe, H. Matsumoto, Catalytic behavior of Au Core/Pd shell nanoparticles on silica prepared by sonochemical and sol-gel processes. Chem. Lett. 29, 1336–1337 (2000)CrossRefGoogle Scholar
  19. 19.
    Y. Mizukoshi, E. Takagi, H. Okuno, R. Oshima, Y. Maeda, Y. Nagata, Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason. Sonochem. 8, 1–6 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 12, 3006–3011 (2000)CrossRefGoogle Scholar
  21. 21.
    Y. Mizukoshi, K. Okitsu, T. Yamamoto, R. Oshima, Y. Nagata, Y. Maeda, Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101(36), 7033–7037 (1997)CrossRefGoogle Scholar
  22. 22.
    A. Abulizi, G.H. Yang, K. Okitsu, J.-J. Zhu, Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4- in water under different pH conditions. Ultrason. Sonochem. 21, 1629–1634 (2014)CrossRefPubMedGoogle Scholar
  23. 23.
    K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: reactivities of reducing species formed by alcohol sonolysis. Ultrason. Sonochem. 31, 456–462 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    K. Okitsu, K. Sharyo, R. Nishimura, One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25, 7786–7790 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    K. Okitsu, Y. Nunota, One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods. Ultrason. Sonochem. 21, 1928–1932 (2014)CrossRefPubMedGoogle Scholar
  26. 26.
    E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012)CrossRefPubMedGoogle Scholar
  27. 27.
    H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    H.S. Nam, J.K. Yoon, J.M. Ko, J.D. Kim, Electrochemical capacitors of flower-like and nanowire structured MnO2 by a sonochemical method. Mater. Chem. Phys. 123, 331–336 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Abulizi, K. Okitsu, J.-J. Zhu, Ultrasound assisted reduction of graphene oxide to graphene in L-ascorbic acid aqueous solutions: kinetics and effects of various factors on the rate of graphene formation. Ultrason. Sonochem. 21, 1174–1181 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)CrossRefPubMedGoogle Scholar
  33. 33.
    L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRefPubMedGoogle Scholar
  34. 34.
    U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, High-concentration solvent exfoliation of graphene. Small 6, 864–871 (2010)CrossRefPubMedGoogle Scholar
  35. 35.
    M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010)CrossRefPubMedGoogle Scholar
  36. 36.
    L.-P. Jiang, S. Xu, J.-M. Zhu, J.-R. Zhang, J.-J. Zhu, H.-Y. Chen, Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem 43, 5877–5883 (2004)CrossRefPubMedGoogle Scholar
  37. 37.
    Xu Hangxun, Kenneth S. Suslick, Sonochemical preparation of functionalized graphenes. J. Am. Chem. Soc. 133, 9148–9151 (2011)CrossRefGoogle Scholar
  38. 38.
    C. Wu, B.P. Mosher, T. Zeng, Rapid synthesis of gold and platinum nanoparticles using metal displacement reduction with sonomechanical assistance. Chem. Mater. 18, 2925–2928 (2006)CrossRefGoogle Scholar
  39. 39.
    C. Wu, B.P. Mosher, T. Zeng, Chemically-mechanically assisted synthesis of metallic and oxide nanoparticles in ambient conditions. J Nanoscience Nanotechnology 8, 386–389 (2008)Google Scholar
  40. 40.
    J.-J. Zhu, S.T. Aruna, Y. Koltypin, A. Gedanken, A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem. Mater. 12, 143–147 (2000)CrossRefGoogle Scholar
  41. 41.
    Q. Shen, Q. Min, J. Shi, L. Jiang, J.-R. Zhang, W. Hou, J.-J. Zhu, Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J. Phys. Chem. C 113, 1267–1273 (2009)CrossRefGoogle Scholar
  42. 42.
    Y.-C. Liu, H.-T. Lee, H.-H. Peng, New pathway for sonoelectrochemical synthesis of gold–silver alloy nanoparticles from their bulk substrates. Chem. Phys. Lett. 400, 436–440 (2004)CrossRefGoogle Scholar
  43. 43.
    J.-J. Shi, S. Wang, T.-T. He, E.S. Abdel-Halim, J.-J. Zhu, Sonoelectrochemical synthesis of water-soluble CdTe quantum dots. Ultrason. Sonochem. 21, 493–498 (2014)CrossRefPubMedGoogle Scholar
  44. 44.
    K. Zhang, S. Yao, G. Li, Y. Hu, One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Nanoscale 7, 2659–2666 (2015)CrossRefPubMedGoogle Scholar
  45. 45.
    S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362–369 (2007)CrossRefGoogle Scholar
  46. 46.
    R.J. Lang, Ultrasonic atomization of liquids. J. Acoust. Soc. Am. 34, 6–9 (1962)CrossRefGoogle Scholar
  47. 47.
    B. Xia, I.W. Lenggoro, K. Okuyama, Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv. Mater. 13, 1579–1582 (2001)CrossRefGoogle Scholar
  48. 48.
    B. Xia, I.W. Lenggoro, K. Okuyama, Nanoparticle separation in salted droplet microreactors. Chem. Mater. 14, 2623–2627 (2002)CrossRefGoogle Scholar
  49. 49.
    Y.T. Didenko, K.S. Suslick, Chemical aerosol flow synthesis of semiconductor nanoparticles. J. Am. Chem. Soc. 127, 12196–12197 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    S.E. Skrabalak, K.S. Suslick, Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990–9991 (2005)CrossRefPubMedGoogle Scholar
  51. 51.
    Sara E. Skrabalak, Kenneth S. Suslick, Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 128, 12642–12643 (2006)CrossRefPubMedGoogle Scholar
  52. 52.
    W.H. Suh, J.K. Kang, Y.-H. Suh, M. Tirrell, K.S. Suslick, G.D. Stucky, Porous Carbon produced in air: physicochemical properties and stem cell engineering. Adv. Mater. 23, 2332–2338 (2011)CrossRefPubMedGoogle Scholar
  53. 53.
    Y. Liang, H. Hou, Y. Yang, H. Glicksman, S. Ehrman, Conductive one- and two-dimensional structures fabricated using oxidation-resistant Cu–Sn particles. ACS Appl. Mater. Interfaces. 9, 34587–34591 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Humanities and Sustainable System SciencesOsaka Prefecture UniversityOsakaJapan
  2. 2.Department of Chemical EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations