Effects of Nanoparticles on Plants, Earthworms, and Microorganisms

  • Gabriela Medina-Pérez
  • Fabián Fernández-Luqueño
  • Rafael G. Campos-Montiel
  • Fernando López-Valdez
  • Edgar Vázquez-Núñez
  • Hermes Pérez-Hernández
  • Sandra Loera-Serna
  • Gerardo Salas-Herrera
  • Aidé Zavala-Cortés


The synthesis of engineered nanomaterials (ENMs) has increased in recent years because novel and unexpected properties and applications have been found to such a degree that hundreds of scientists have published concerns and evidence regarding the toxicology of ENMs. However, most of the reported findings have been inconsistent, so more research is needed, but also long-term in situ field trials are required, while the standardization of tests, chemical reagents, and methodologies must be strengthened and regulated in accordance with scientific advice or international organizations. This chapter discusses new findings published during the last 5 years regarding the advantages and disadvantages of ENMs, as well as findings obtained in our laboratories and greenhouse. We found that ENMs have favorable effects on some crops and biological systems. Consequently, ENMs have potential industrial applications in the agricultural sector, with biological, environmental, and ecological advantages. Nevertheless, the effects of ENMs depend on the kind of ENM, exposition period, concentration, substrate or soil type, kind and age of organisms, biotic and abiotic interactions, etc.; i.e., a specific test has to be carried out for each particular condition, and generalizations regarding the effects of ENMs should be avoided, otherwise human and environmental health—but also sustainable development—will be compromised.


Engineered nanomaterials Human and environmental health Sustainable development 



This research was funded by Ciencia Básica SEP-CONACYT project numbers 151881 and 287225, the Sustainability of Natural Resources and Energy Programs (Cinvestav-Saltillo), and Cinvestav-Zacatenco. G.M.-P., H.P.-H., G.S.-H., and A.Z.-C. received grant-aided support from Becas CONACYT. F.F.-L., R.G.C.-M., F.L.-V., E.V.-N., and S.L.-S. received grant-aided support from Sistema Nacional de Investigadores (SNI), Mexico.

Competing interests The authors declare that they have not competing interests.


  1. Aal NA, Al-Hazmi F, Al-Ghamdi AA, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties. Spectrochim Acta A 135:871–877CrossRefGoogle Scholar
  2. Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52(4):1908–1918CrossRefGoogle Scholar
  3. Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138CrossRefGoogle Scholar
  4. Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211CrossRefGoogle Scholar
  5. Bouguerra S, Gavina A, Ksibi M, Rasteiro MG, Rocha-Santos T, Pereira R (2017) Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicol Environ Saf 129:291–301CrossRefGoogle Scholar
  6. Brami C, Glover AR, Butt KR, Lowe CN (2017) Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol Environ Saf 141:64–69CrossRefGoogle Scholar
  7. Cao J, Fen Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10. Scholar
  8. Carbone S, Vittori Antisari L, Gaggiaa F, Baffonia L, Di Gioiaa D, Vianelloa G, Nannipieri P (2014) Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J Hazard Mater 280:89–96CrossRefGoogle Scholar
  9. Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94:490–495CrossRefGoogle Scholar
  10. Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76(3):891–902CrossRefGoogle Scholar
  11. Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Vrček IV, Letofsky-Papst IP, Šikić S, Balen B (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res 25:5590CrossRefGoogle Scholar
  12. De la Rosa G, Garcia-Castaneda C, Vazquez-Nunez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235Google Scholar
  13. Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J, Peralta-Videa JR, Guo H (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893CrossRefGoogle Scholar
  14. Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126CrossRefGoogle Scholar
  15. Fernandez-Luqueno F, Lopez-Valdez F, Dendooven L, Luna-Suarez S, Ceballos-Ramirez JM (2016) Why wastewater sludge stimulates and accelerates removal of PAHs in polluted soils? Appl Soil Ecol 101: 1-4CrossRefGoogle Scholar
  16. Garcia-Gomez C, Babin M, Obrador A, Alvarez J, Fernandez M (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22(21):16803–16813CrossRefGoogle Scholar
  17. Gokhale S (2016) Effects of engineered nanomaterials released into the atmosphere. J Hazard Toxic Radioact Waste 20(1):UNSP B4015005CrossRefGoogle Scholar
  18. Hafizi Z, Nasr N (2018) The effect of zinc oxide nanoparticles on safflower plant growth and physiology. Eng Technol Appl Sci Res 8(1):2508–2513Google Scholar
  19. Hawksworth DL (1991) The fungal dimension of biodiversity—magnitude, significance, and conservation. Mycol Res 95(6):641–655CrossRefGoogle Scholar
  20. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185. Scholar
  21. Hrda K, Oprsal J, Knotek P, Pouzar M, Vlcek M (2016) Toxicity of zinc oxide nanoparticles to the annelid Enchytraeus crypticus in agar-based exposure media. Chem Pap 70(11):1512–1520CrossRefGoogle Scholar
  22. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42(4):586–591CrossRefGoogle Scholar
  23. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447CrossRefGoogle Scholar
  24. Jesmer AH, Velicogna JR, Schwertfeger DM, Scroggins RP, Princz JI (2017) The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil. Environ Toxicol Chem 36:2756–2765. Scholar
  25. Karimi M, Sadeghi R, Kokini J (2018) Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 75:139–145CrossRefGoogle Scholar
  26. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):65–70CrossRefGoogle Scholar
  27. Latef AAHA, Srivastava AK, El-sadek MSA, Kordrostami M, Tran L-SP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29:1065–1073CrossRefGoogle Scholar
  28. Lebedev S, Yausheva E, Galaktionova L, Sizova E (2016) Impact of molybdenum nanoparticles on survival, activity of enzymes, and chemical elements in Eisenia fetida using test on artificial substrata. Environ Sci Pollut Res 23(18): 18099-18110.CrossRefGoogle Scholar
  29. Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behaviour, transport and impacts on microbial communities. Sci Total Environ 565:889–901CrossRefGoogle Scholar
  30. Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γFe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334CrossRefGoogle Scholar
  31. Liu J, Williams PC, Geisler-Lee J, Goodson BM, Fakharifar M, Peiravi M, Chen D, Lightfoot DA, Gemeinhardt ME (2018) Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants, and earthworms. Environ Res 164:197–203CrossRefGoogle Scholar
  32. Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. Pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897CrossRefGoogle Scholar
  33. Medina-Pérez G, Fernández-Luqueño F, Vazquez-Nuñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (in press) Remediation of polluted soils using nanotechnologies: environmental benefits and risks. Pol J Environ StudGoogle Scholar
  34. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127CrossRefGoogle Scholar
  35. Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA, Oliveira HC, Ledezma-Pérez AS, Romero J, Fraceto LF (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873. Scholar
  36. Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience 8(1):36–42CrossRefGoogle Scholar
  37. Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594CrossRefGoogle Scholar
  38. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16CrossRefGoogle Scholar
  39. Rocha TL, Mestre NC, Saboia-Morais SMT, Babianno MJ (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17CrossRefGoogle Scholar
  40. Romero-Freire A, Lofts S, Martín Peinado FJ, van Gestel CA (2017) Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environ Toxicol Chem 36:137–146CrossRefGoogle Scholar
  41. Shankramma KS, Yallappa MB, Manjanna SJ (2017) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990. Scholar
  42. Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22CrossRefGoogle Scholar
  43. Singh D, Kumar A (2018) Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology 27:23CrossRefGoogle Scholar
  44. Soares C, Branco-Neves S, de-Sousa A, Pereira R, Fidalgo F (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452CrossRefGoogle Scholar
  45. Song RS, Qin YW, Suh S, Keller AA (2017) Dynamic model for the stocks and release flows of engineered nanomaterials. Environ Sci Technol 51(21):12424–12433CrossRefGoogle Scholar
  46. Stewart DTR, Noguera-Oviedo K, Lee V, Banerjee S, Watson DF, Aga DS (2013) Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm Eisenia andrei. Environ Toxicol Chem 32(6):1288–1294CrossRefGoogle Scholar
  47. Swiatek ZM, van Gestel CAM, Bednarska AJ (2017) Toxicokinetics of zinc-oxide nanoparticles and zinc ions in the earthworm Eisenia andrei. Ecotoxicol Environ Saf 143:151–158CrossRefGoogle Scholar
  48. Tan WJ, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs—a critical review. Environ Sci Nano 5(2):257–278CrossRefGoogle Scholar
  49. Tangaa SR, Selck H, Winther-Nielsen M, Khan FR (2016) Trophic transfer of metal-based nanoparticles in aquatic environments: a review and recommendations for future research focus. Environ Sci Nano 3(5):966–981CrossRefGoogle Scholar
  50. Terekhova V, Gladkova M, Milanovskiy E, Kydralieva K (2017) Engineered nanomaterials’ effects on soil properties: problems and advances in investigation. In: Ghorbanpour M, Khanuja M, Varma A (eds) Nanoscience and plant–soil systems. Springer, Cham, pp 115–136CrossRefGoogle Scholar
  51. Tomacheski D, Pittol M, Simões DN, Ribeiro VF, Santana RMC (2017) Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Global J Environ Sci Manage 4(4):341–350Google Scholar
  52. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNPs)–induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177CrossRefGoogle Scholar
  53. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Chem 110:118–127Google Scholar
  54. Vinkovic T, Novák O, Strnad M, Goessler W, Jurašin DD, Paradikovic N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18CrossRefGoogle Scholar
  55. Wang J, Shu K, Zhang LI, Youbin S (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27:482–490. Scholar
  56. Xie YK, Dong HR, Zeng GM, Tang L, Jiang Z, Zhang C, Deng JM, Zhang LH, Zhang Y (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407CrossRefGoogle Scholar
  57. Yausheva E, Sizova E, Lebedev S, Skalny A, Miroshnikov S, Plotnikov A, Khlopko Y, Gogoleva N, Cherkasov S (2016) Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res 23(13):13245–13254CrossRefGoogle Scholar
  58. Yirsaw BD, Mayilswami S, Megharaj M, Chen Z, Naidu R (2016) Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Environ Sci Pollut Res 23:9822–9831. Scholar
  59. Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process Impacts 17:1783–1793CrossRefGoogle Scholar
  60. Zuverza-Mena N, Martinez-Fernandez D, Du WC, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gabriela Medina-Pérez
    • 1
  • Fabián Fernández-Luqueño
    • 2
  • Rafael G. Campos-Montiel
    • 3
  • Fernando López-Valdez
    • 4
  • Edgar Vázquez-Núñez
    • 5
  • Hermes Pérez-Hernández
    • 6
  • Sandra Loera-Serna
    • 7
  • Gerardo Salas-Herrera
    • 8
  • Aidé Zavala-Cortés
    • 1
  1. 1.Transdisciplinary Doctoral Program in Scientific and Technological Development for the SocietyCinvestav-ZacatencoMexico CityMexico
  2. 2.Sustainability of Natural Resources and Energy ProgramsCinvestav-Saltillo, Ramos ArizpeRamos ArizpeMexico
  3. 3.ICAP—Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingoMexico
  4. 4.Agricultural Biotechnology GroupResearch Center for Applied Biotechnology (CIBA) — Instituto Politécnico NacionalTlaxcalaMexico
  5. 5.Department of Chemical, Electronic, and Biomedicine Engineering, Sciences and Engineering DivisionUniversity of GuanajuatoLeon, GuanajuatoMexico
  6. 6.El Colegio de la Frontera Sur, AgroecologíaUnidad CampecheCampecheMexico
  7. 7.División de Ciencias Básicas e IngenieríaUniviversidad Autónoma Metropolitana AzcapotzalcoMexico CityMexico
  8. 8.Universidad Autónoma Agraria Antonio NarroSaltilloMexico

Personalised recommendations