Nanofertilizers and Their Controlled Delivery of Nutrients

  • Fernando López-Valdez
  • Mariana Miranda-Arámbula
  • Ada María Ríos-Cortés
  • Fabián Fernández-Luqueño
  • Verónica de-la-Luz


Use of nanoparticles as nanofertilizers is a new research area, impacting crop science, environmental science, and agronomy—for example, the properties of the soil, its communities, and plant growth and development. Nanotechnology is now playing an important role because of the demand for high-quality and innocuous foods, and fertilizers with less impact or a neutral impact on the environment and on health. Nanofertilizers could be more stable and more efficient than conventional fertilizers. Nevertheless, nanoparticles could be important pollutant agents if we are not sufficiently well informed to apply or manage them correctly. In this chapter, we give a brief review of several important topics on use of nanoparticles as nanofertilizers, their formulations, and other important topics, such as the properties of ions and nanoparticles, materials for controlled delivery, plant cell processes, the entry of nutrients into plants, the advantages and disadvantages of nanoparticles, and other processes involved with them.


Controlled delivery Nanofertilizers Uptake Adsorption Nanoparticles 



We would like to thank the Instituto Politécnico Nacional and CONACYT for their financial support (project number CB-2016-01 287225) and grant-aided support received by F.L.-V. and F.F.-L.

Competing interests The authors declare that they have no competing interests.


  1. Abdelmonem AM, Pelaz B, Kantner K, Bigall NC, del Pino P, Parak WJ (2015) Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J Inorg Biochem 153:334–338. Scholar
  2. Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016) Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151:233–243. Scholar
  3. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. Scholar
  4. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. Scholar
  5. Fernández-Luqueño F, López-Valdez F, Fernanda Valerio-Rodríguez M (2015) Mineral fertilizers, bio-fertilizers and PGPRs: advantages and disadvantages of its implementation. In: Sinha S, Pant KK, Bajpai S (eds) Fertilizer technology II, biofertilizers. Studium Press, USAGoogle Scholar
  6. Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ (2017) Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 10:852. Scholar
  7. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. Scholar
  8. Huk A, Izak-Nau E, el Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations—effects of charge and surface coating. Part Fibre Toxicol 12:25. Scholar
  9. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229. Scholar
  10. Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Physiol Metab 12:291–298. Scholar
  11. Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72:310–322. Scholar
  12. León-Silva S, Fernández-Luqueño F, López-Valdez F (2016) Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut 227:306. Scholar
  13. Lillard JR, James W, Singh R (2017) Nanoformulations for plants. US Patent 20170280712 A1, 5 Oct 2017Google Scholar
  14. Maathuis FJ (2009) Physiological functions of mineral macronutrients. Physiol Metab 12:250–258. Scholar
  15. Nilanjan D (2016) Plant nutrient coated nanoparticles and methods for their preparation and use. US Patent 2016/0318820 A1, 3 Nov 2016Google Scholar
  16. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. Scholar
  17. Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Physiol Metab 12:267–274. Scholar
  18. Rodrigues SM, Demokritou P, Dokoozlian N, Hendren CO, Karn B, Mauter MS, Sadik OA, Safarpour M, Unrine JM, Viers J, Welle P, White JC, Wiesner MR, Lowry GV (2017) Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ Sci Nano 4:767–781. Scholar
  19. Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692. Scholar
  20. Zhou D, Jin S, Li L, Wang Y, Weng N (2011) Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J Environ Sci 23:1852–1857. Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fernando López-Valdez
    • 1
  • Mariana Miranda-Arámbula
    • 1
  • Ada María Ríos-Cortés
    • 1
  • Fabián Fernández-Luqueño
    • 2
  • Verónica de-la-Luz
    • 3
  1. 1.Agricultural Biotechnology Group, Research Center for Applied Biotechnology (CIBA) —Instituto Politécnico NacionalTlaxcalaMexico
  2. 2.Sustainability of Natural Resources and Energy ProgramsCinvestav-SaltilloRamos ArizpeMexico
  3. 3.Catedra-CONACyTUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico

Personalised recommendations