Engineered Nanoparticles: Are They an Inestimable Achievement or a Health and Environmental Concern?

  • Sein León-Silva
  • Fabián Fernández-Luqueño
  • Fernando López-Valdez


Inorganic particles often exhibit novel and outstanding properties as their size approaches nanosize dimensions. The synthesis of these nanoengineered materials with specific composition, architecture, and functionality, and their uses in diverse fields, are changing paradigms. In this chapter we highlight the application of a lot of nanoparticles in biology, medicine, and biomedical engineering, and some concerns regarding human and environmental health are also discussed. There are two approaches to nanoparticle development and application for health care purposes: the bottom-up (science-driven) approach and the top-down (regulation-driven) approach, but neither of these has been able to demonstrate health care benefits without toxicological side effects. Consequently, nanoparticle toxicity has to be assessed, and the standardization of techniques should be set by scientists and decision makers worldwide. Cutting-edge knowledge regarding the interactions between nanoparticles and human health has to move forward, but environmental quality and social welfare must also be ensured.


Biocompatibility and toxicity Current challenge Drug delivery Environment pollution Human disease Modern medicine Molecular diagnostics Sustainable development 



This research was founded by ‘Ciencia Básica SEP-CONACyT’ projects 151881 and 287225, the Sustainability of Natural Resources and Energy Programs (Cinvestav-Saltillo), and Cinvestav Zacatenco. L-S S received grantaided support from ‘Becas Conacyt’. F-L F and L-V F received grant-aided support from ‘Sistema Nacional de Investigadores (SNI)’, México.

Competing Interests The authors declare that they have not competing interests.


  1. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  2. Adams CP, Walker KA, Obare SO, Docherty KM (2014) Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One 9:e85981PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahn SJ, Lee SJ, Kook JK, Lim BS (2009) Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 25:206–213PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alivisatos P, Cummings P, DeYoreo J, Fichthorn K, Gates B, Hwang R, Lowndes D, Majumdar A, Makowksi L, Michalske T, Misewich J, Murry C, Sibener S, Teague C, Williams E (2005) Nanoscience research for energy needs: report of the March 2004 National Nanotechnology Initiative Grand Challenge Workshop. Energy 86Google Scholar
  5. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391PubMedPubMedCentralCrossRefGoogle Scholar
  6. Angeli E, Buzio R, Firpo G, Magrassi R, Mussi V, Repetto L, Valbusa U (2008) Nanotechnology applications in medicine. Tumori 94:206–215PubMedCrossRefPubMedCentralGoogle Scholar
  7. Annapragada A (2015) Advances in nanoparticle imaging technology for vascular pathologies. Annu Rev Med 66:177–193PubMedCrossRefPubMedCentralGoogle Scholar
  8. Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baccar H, Adams CP, Abdelghani A, Obare SO (2013) Chronoamperometric-based detection of hydrogen peroxide using palladium nanoparticles. Int J Nanotechnol 10:563CrossRefGoogle Scholar
  10. Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) One-pot synthesis of polyacrylamide–gold nanocomposite. Mater Chem Phys 106:412–415CrossRefGoogle Scholar
  11. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345PubMedCentralCrossRefGoogle Scholar
  13. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39:3031–3056PubMedCrossRefPubMedCentralGoogle Scholar
  14. Blasko JC, Grimm PD, Sylvester JE, Badiozamani KR, Hoak D, Cavanagh W (2000) Palladium-103 brachytherapy for prostate carcinoma. Int J Radiat Oncol 46:839–850CrossRefGoogle Scholar
  15. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bonifacio BV, da Dilva PB, Ramos MAD, Negri KMS, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  17. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419PubMedPubMedCentralCrossRefGoogle Scholar
  18. Calixto GMF, Bernegossi J, de Freitas LM, Fontana CR, Chorili M (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21:342PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen CY, Chiang CL (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62:3607–3609CrossRefGoogle Scholar
  21. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP (2013) Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 34:2194–2201PubMedCrossRefPubMedCentralGoogle Scholar
  23. Conserve Energy Future (2017) Pollution facts. (Verified December 18, 2017).
  24. Da Silva PB, de Freitas ES, Bernegossi J, Goncalez ML, Sato MR, Leite CQF, Pavan FR, Chorilli M (2016) Nanotechnology-based drug delivery systems for treatment of tuberculosis—a review. J Biomed Nanotechnol 12:241–260PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dumas A, Couvreur P (2015) Palladium: a future key player in the nanomedical field? Chem Sci 6:2153–2157PubMedPubMedCentralCrossRefGoogle Scholar
  27. Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  28. Elias CN, Lima JHC, Valiev R, Meyers MA (2008) Biomedical applications of titanium and its alloys. J Miner Met Mater Soc 60:46–49CrossRefGoogle Scholar
  29. Espitia PJP, Soares N d FF, Coimbra JS d R, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464CrossRefGoogle Scholar
  30. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231PubMedCrossRefGoogle Scholar
  31. Fernández-Luqueño F, López-Valdez F, Valerio-Rodríguez MF, Pariona N, Hernández-López JL, García-Ortíz I, López-Baltazar J, Vega-Sánchez MC, Espinosa-Zapata R, Acosta-Gallegos JA (2014) Effects of nanofertilizers on plant growth and development, and their interrelationship with the environmental. In: López-Valdez F, Fernández-Luqueño F (eds) Fertilizers: components, uses in agriculture and environmental impact. NOVA Science, New York, pp 211–224Google Scholar
  32. Finger PT, Berson A, Ng T, Szechter A (2002) Palladium-103 plaque radiotherapy for choroidal melanoma: an 11-year study. Int J Radiat Oncol Biol Phys 54:1438–1445PubMedCrossRefGoogle Scholar
  33. Fonseca-Santos B, Gremiao MPD, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomed 10:S87148Google Scholar
  34. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898PubMedCrossRefGoogle Scholar
  35. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Steven M, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024PubMedCrossRefGoogle Scholar
  36. Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301CrossRefGoogle Scholar
  37. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRefGoogle Scholar
  38. Gehrke H, Pelka J, Hartinger CG, Blank H, Bleimund F, Schneider R, Gerthsen D, Bräse S, Crone M, Türk M, Marko D (2011) Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch Toxicol 85:799–812PubMedCrossRefGoogle Scholar
  39. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315PubMedCrossRefGoogle Scholar
  41. Gidwani B, Vyas A (2015) The potentials of nanotechnology-based drug delivery system for treatment of ovarian cancer. Artif Cell Nanomed B 43:291–297CrossRefGoogle Scholar
  42. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604CrossRefGoogle Scholar
  43. Grunkemeier GL, Jin R, Starr A (2006) Prosthetic heart valves: objective performance criteria versus randomized clinical trial. Ann Thorac Surg 82:776–780PubMedCrossRefGoogle Scholar
  44. Gui R, Wan A, Zhang Y, Li H, Zhao T (2014) Ratiometric and time-resolved fluorimetry from quantum dots featuring drug carriers for real-time monitoring of drug release in situ. Anal Chem 86:5211–5214PubMedCrossRefGoogle Scholar
  45. Hamdy AS, Butt DP (2007) Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for aluminum alloys. J Mater Process Technol 181:76–80CrossRefGoogle Scholar
  46. He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845CrossRefGoogle Scholar
  47. Helland A, Kastenholz H (2008) Development of nanotechnology in light of sustainability. J Clean Prod 16:885–888CrossRefGoogle Scholar
  48. Hofmann-Amtenbrink M, Grainger DW, Hofmann H (2015) Nanoparticles in medicine: current challenges facing inorganic nanoparticles toxicity assessment and standardizations. Nanomedicine 11:1689–1694PubMedCrossRefGoogle Scholar
  49. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRefGoogle Scholar
  50. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hwang CB, Fu YS, Lu YL, Jang SW, Chou PT, Wang CRC, Yu SJ (2000) Synthesis, characterization, and highly efficient catalytic reactivity of suspended palladium nanoparticles. J Catal 195:336–341CrossRefGoogle Scholar
  52. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5CrossRefGoogle Scholar
  53. Jiang SP (2012) Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int J Hydrog Energy 37:449–470CrossRefGoogle Scholar
  54. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432PubMedCrossRefPubMedCentralGoogle Scholar
  55. Karn B, Kuiken T, Otto M (2011) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Cienc Saude Colet 16:165–178CrossRefGoogle Scholar
  56. Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD (2011) Fatigue crack growth behavior of titanium foams for medical applications. Mater Sci Eng A 528:1602–1607CrossRefGoogle Scholar
  57. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137PubMedCrossRefGoogle Scholar
  58. Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490CrossRefGoogle Scholar
  59. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  60. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  61. Kim T, Hyeon T (2013) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25:12001CrossRefGoogle Scholar
  62. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress–dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kowalska E, Czerwosz E, Diduszko R, Kaminska A, Danila M (2013) Influence of PdHx formation ability on hydrogen sensing properties of palladium–carbonaceous films. Sensors Actuators A Phys 203:434–440CrossRefGoogle Scholar
  64. Krzyzewska I, Kyzioł-Komosińska J, Rosik-Dulewska C, Czupioł J, Antoszczyszyn-Szpicka P (2016) Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements. Arch Environ Prot 42:87–101CrossRefGoogle Scholar
  65. Kulinowski K, Lippy B (2011) Training workers on risks of nanotechnology. National Clearinghouse for Worker Safety and Health Training, National Institute of Environmental and Health Sciences, Research Triangle ParkGoogle Scholar
  66. Kumari B, Singh DP (2016) A review of multifaceted applications of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105CrossRefGoogle Scholar
  67. Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1:1381–1396CrossRefGoogle Scholar
  68. Lamni R, Sanjinés R, Parlinska-Wojtan M, Karimi A, Lévy F (2005) Microstructure and nanohardness properties of Zr–Al–N and Zr–Cr–N thin films. J Vac Sci Technol A 23:593–598CrossRefGoogle Scholar
  69. Larese Filon F, Crosera M, Mauro M, Baracchini E, Bovenzi M, Montini T, Fornasiero P, Adami G (2016) Palladium nanoparticles exposure: evaluation of permeation through damaged and intact human skin. Environ Pollut 214:497–503PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647PubMedPubMedCentralCrossRefGoogle Scholar
  71. León-Silva S, Fernández-Luqueño F, López-Valdez F (2016) Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut 227:306CrossRefGoogle Scholar
  72. Li Y, Leung P, Yao L, Song QW, Newton E (2006a) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63PubMedCrossRefPubMedCentralGoogle Scholar
  73. Li F, Zhou S, Gu A, Wu L (2006b) UV-curable coatings with nano-TiO2. Polym Eng Sci 46:1402–1410CrossRefGoogle Scholar
  74. Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu J, Jiang G (2015) Silver nanoparticles in the environment, 1st edn. Springer-Verlag Berlin, Heidelberg, pp 1–152Google Scholar
  76. Liu Y, Sun Y, Zeng F, Xie W, Liu Y, Geng L (2014) Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins. J Nanopart Res 16:1–8Google Scholar
  77. Logothetidis S (2012) Nanotechnology: principles and applications. Nanosci Technol 59:1–22Google Scholar
  78. Long NV, Thi CM, Yong Y, Nogami M, Ohtaki M (2013) Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells. J Nanosci Nanotechnol 13:4799–4824PubMedCrossRefPubMedCentralGoogle Scholar
  79. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326CrossRefGoogle Scholar
  80. Mackenzie K, Frenzel H, Kopinke FD (2006) Hydrodehalogenation of halogenated hydrocarbons in water with Pd catalysts: reaction rates and surface competition. Appl Catal B Environ 63:161–167CrossRefGoogle Scholar
  81. Mackowiak SA, Schmidt A, Weiss V, Argyo C, Von Schirnding C, Bein T, Bräuchle C (2013) Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett 13:2576–2583PubMedCrossRefPubMedCentralGoogle Scholar
  82. Mantovani E, Borsella E, Porcari A (2016) Nanotechnologies: opportunities and challenges. Gior Ital Dermat V 38:158–160Google Scholar
  83. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  84. Marchesan S, Prato M (2013) Nanomaterials for (Nano)medicine. ACS Med Chem Lett 4:147–149PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847PubMedPubMedCentralCrossRefGoogle Scholar
  86. Miseljic M, Olsen SI (2014) Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 16:2427CrossRefGoogle Scholar
  87. Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, Prokoshkin S, Solov’Yov AV, Korotitskiy A, Gutmanas E, Gotman I, Rabkin E, Psakh’E S, Dluhoš L, Seefeldt M, Smolin A (2014) Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R Rep 81:1–19CrossRefGoogle Scholar
  88. Miyake S, Kawasaki S, Yamazaki S (2013) Nanotribology properties of extremely thin diamond-like carbon films at high temperatures with and without vibration. Wear 300:189–199CrossRefGoogle Scholar
  89. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides—a review. Int J Eng Sci Technol 2:127–146Google Scholar
  90. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRefGoogle Scholar
  91. Nasrollahzadeh M, Babaei F, Mohammad Sajadi S, Ehsani A (2014) Green synthesis, optical properties and catalytic activity of silver nanoparticles in the synthesis of N-monosubstituted ureas in water. Spectrochim Acta A Mol Biomol Spectrosc 132:423–429PubMedCrossRefPubMedCentralGoogle Scholar
  92. Newton MA, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2015) Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nat Commun 6:8675PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nida DL, Nitin N, Yu WW, Colvin VL, Richards-Kortum R (2008) Photostability of quantum dots with amphiphilic polymer–based passivation strategies. Nanotechnology 19:35701CrossRefGoogle Scholar
  94. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefPubMedCentralGoogle Scholar
  95. Niinomi M (2008) Biologically and mechanically biocompatible titanium alloys. Mater Trans 49:2170–2178CrossRefGoogle Scholar
  96. Ogunlusi GO, Adekunle AS, Maxakato NW, Mamba BB (2012) Characterization of a nano-synthesised cobalt complex and its electrocatalytic properties towards nitrite oxidation. Int J Electrochem Sci 7:2904–2917Google Scholar
  97. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:35004CrossRefGoogle Scholar
  98. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6:3767–3775PubMedCrossRefPubMedCentralGoogle Scholar
  99. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253PubMedCrossRefPubMedCentralGoogle Scholar
  100. Panyala NR, Peña-Méndez EM, Havel J (2009) Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91Google Scholar
  101. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347PubMedCrossRefPubMedCentralGoogle Scholar
  102. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  103. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11CrossRefGoogle Scholar
  104. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169PubMedCrossRefPubMedCentralGoogle Scholar
  105. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:85103PubMedCrossRefPubMedCentralGoogle Scholar
  106. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10CrossRefGoogle Scholar
  107. Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267PubMedCrossRefPubMedCentralGoogle Scholar
  108. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rahman MM, Elaissari A (2010) Organic–inorganic hybrid magnetic latex. Adv Polym Sci 233:237–281CrossRefGoogle Scholar
  110. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730PubMedCrossRefPubMedCentralGoogle Scholar
  111. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590PubMedCrossRefPubMedCentralGoogle Scholar
  113. Renn O, Roco MC (2006) Nanotechnology and the need for risk governance. J Nanopart Res 8:153–191CrossRefGoogle Scholar
  114. Resnik DB, Tinkle SS (2007) Ethics in nanomedicie. Nanomedicine (Lond) 2:345–350CrossRefGoogle Scholar
  115. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876CrossRefGoogle Scholar
  116. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rutnakornpituk M, Baranauskas VV, Riffle JS, Connolly J, Pierre TGS, Dailey JP (2002) Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur Cells Mater 3:102–105Google Scholar
  118. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779PubMedPubMedCentralCrossRefGoogle Scholar
  119. Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O (2015) Chemical synthesis and application of palladium nanoparticles. J Mater Sci 50:2337–2354CrossRefGoogle Scholar
  120. Samimi A, Zarinabadi S (2012) Reduction of greenhouse gases emission and effect on environment. Am J Sci 8:1011–1015Google Scholar
  121. Sangvanich T, Morry J, Fox C, Ngamcherdtrakul W, Goodyear S, Castro D, Fryxell GE, Addleman RS, Summers AO, Yantasee W (2014) Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces 6:5483–5493PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sathya A, Guardia P, Brescia R, Silvestri N, Pugliese G, Nitti S, Manna L, Pellegrino T (2016) CoxFe3-xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28:1769–1780CrossRefGoogle Scholar
  123. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509PubMedCrossRefPubMedCentralGoogle Scholar
  124. Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358PubMedCrossRefPubMedCentralGoogle Scholar
  125. Schulte PA, Geraci CL, Murashov V, Kuempel ED, Zumwalde RD, Castranova V, Hoover MD, Hodson L, Martinez KF (2014) Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res 16:2153PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine—part 2. Nanomedicine 6:612–618PubMedCrossRefPubMedCentralGoogle Scholar
  127. Selvan ST (2010) Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (mini-review). Biointerphases 5:FA110–FA115PubMedCrossRefPubMedCentralGoogle Scholar
  128. Şengül H, Theis TL, Ghosh S (2008) Toward sustainable nanoproducts. J Ind Ecol 12:329–359CrossRefGoogle Scholar
  129. Shaabani B, Alizadeh-Gheshlaghi E, Azizian-Kalandaragh Y, Khodayari A (2014) Preparation of CuO nanopowders and their catalytic activity in photodegradation of rhodamine-B. Adv Powder Technol 25:1043–1052CrossRefGoogle Scholar
  130. Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12:701–710PubMedCrossRefPubMedCentralGoogle Scholar
  131. Shenava A, Sharma SM, Shetty V, Shenoy S (2015) Silver nanoparticles: a boon in clinical medicine. J Oral Res Rev 7:2–5CrossRefGoogle Scholar
  132. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shi W, Wang Z, Zhang Q, Zheng Y, Ieong C, He M, Lortz R, Cai Y, Wang N, Zhang T, Zhang H, Tang Z, Sheng P, Muramatsu H, Kim YA, Endo M, Araujo PT, Dresselhaus MS (2012) Superconductivity in bundles of double-wall carbon nanotubes. Sci Rep 2:625PubMedPubMedCentralCrossRefGoogle Scholar
  134. Shibuya S, Ozawa Y, Watanabe K, Izuo N, Toda T, Yokote K, Shimizu T (2014) Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One 9:e109288PubMedPubMedCentralCrossRefGoogle Scholar
  135. Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242CrossRefGoogle Scholar
  137. Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605PubMedCrossRefPubMedCentralGoogle Scholar
  138. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sotiriou GA, Hirt AM, Lozach PY, Teleki A, Krumeich F, Pratsinis SE (2011) Hybrid, silica-coated, Janus-like plasmonic–magnetic nanoparticles. Chem Mater 23:1985–1992PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89PubMedCrossRefGoogle Scholar
  141. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908PubMedCrossRefGoogle Scholar
  142. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608PubMedPubMedCentralCrossRefGoogle Scholar
  143. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21PubMedCrossRefPubMedCentralGoogle Scholar
  144. Suman TY, Radhika Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106:74–78PubMedCrossRefPubMedCentralGoogle Scholar
  145. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147PubMedCrossRefGoogle Scholar
  146. Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3:579–592PubMedCrossRefPubMedCentralGoogle Scholar
  147. Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun 48:2858–2860CrossRefGoogle Scholar
  148. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111:1202–1208PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251PubMedCrossRefPubMedCentralGoogle Scholar
  150. Tuçek J, Kemp KC, Kim KS, Zboŗil R (2014) Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8:7571–7612PubMedCrossRefPubMedCentralGoogle Scholar
  151. Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J (2008) Nanostructured titanium for biomedical applications. Adv Eng Mater 10:B15–B17CrossRefGoogle Scholar
  152. Van Broekhuizen P, Van Veelen WIM, Streekstra WH, Schulte P, Reijnders L (2012) Exposure limits for nanoparticles: report of an international workshop on nano reference values. Ann Occup Hyg 56:515–524PubMedPubMedCentralGoogle Scholar
  153. Vatta LL, Sanderson RD, Koch KR (2006) Magnetic nanoparticles: properties and potential applications. Adv Mater 78:1793–1801Google Scholar
  154. Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M (2016) Enabling personalized cancer medicine decisions: the challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics. Oncol Rep 35:1891–1904PubMedCrossRefGoogle Scholar
  155. Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wang X (2010) Fresh platinum complexes with promising antitumor activity. Anti Cancer Agents Med Chem 10:396–411CrossRefGoogle Scholar
  157. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618CrossRefGoogle Scholar
  158. Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141:645–652PubMedCrossRefGoogle Scholar
  159. Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WEG (2014) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304. Scholar
  160. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedCrossRefGoogle Scholar
  161. Xu Y, Mahmood M, Li Z, Dervishi E, Trigwell S, Zharov VP, Ali N, Saini V, Biris AR, Lupu D, Boldor D, Biris AS (2008) Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19:435102PubMedCrossRefGoogle Scholar
  162. Yadollahpour A (2015) Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient J Chem 31:271–277CrossRefGoogle Scholar
  163. Yeung KL, Leung WK, Yao N, Cao S (2009) Reactivity and antimicrobial properties of nanostructured titanium dioxide. Catal Today 143:218–224CrossRefGoogle Scholar
  164. Yin ZF, Wu L, Hua B, Yang G, Su YH (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15:4844–4858PubMedCrossRefGoogle Scholar
  165. Zalba S, Garrido MJ (2013) Liposomes, a promising strategy for clinical application of platinum derivatives. Expert Opin Drug Deliv 10:829–844PubMedCrossRefGoogle Scholar
  166. Zhang J, Chen L, Tse WH, Bi R, Chen L (2014a) Inorganic nanoparticles: engineering for biomedical applications. IEEE Nanotechnol Mag 8:21–28CrossRefGoogle Scholar
  167. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014b) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–237CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sein León-Silva
    • 1
  • Fabián Fernández-Luqueño
    • 2
  • Fernando López-Valdez
    • 3
  1. 1.Transdisciplinary Doctoral Program in Scientific and Technological Development for the SocietyCinvestav-ZacatencoMexico CityMexico
  2. 2.Sustainability of Natural Resources and Energy ProgramsCinvestav-SaltilloRamos ArizpeMexico
  3. 3.Agricultural Biotechnology GroupResearch Center for Applied Biotechnology (CIBA) — Instituto Politécnico NacionalTlaxcalaMexico

Personalised recommendations