Advertisement

Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers

  • Fabián Fernández-Luqueño
  • Gabriela Medina-Pérez
  • Fernando López-Valdez
  • Rodrigo Gutiérrez-Ramírez
  • Rafael G. Campos-Montiel
  • Edgar Vázquez-Núñez
  • Sandra Loera-Serna
  • Isac Almaraz-Buendía
  • Oscar Enrique Del Razo-Rodríguez
  • Alfredo Madariaga-Navarrete
Chapter

Abstract

Agronanobiotechnology is a term that refers to the intersection of agronomy, nanotechnology, and biotechnology. Agronanobiotechnology is a discipline in which tools from nanotechnology are developed and applied to the study of agronomic and biological phenomena. The objective of this chapter is to present cutting-edge knowledge regarding agronanobiotechnology, which is aimed at preserving environmental health and improving the welfare of farmers while also increasing crop yields and the production of innocuous feed. Producers of innovative products in agronanobiotechnology are experiencing difficulties in bringing these products to market, because of their high production costs, which regularly are required in high volumes in the agricultural sector, while unclear technical benefits, legislative uncertainties, and negative public opinion are hampering the development of agronanobiotechnology; notwithstanding these difficulties, the possibilities offered by agronanobiotechnology in several agricultural applications are moving forward. Meanwhile, progress in legislation, nanoremediation, environmental monitoring, international safety regulation, and drug delivery techniques could improve the agricultural and livestock sector indirectly. For research and development in agronanobiotechnology to move forward, long-term in situ field trials are required, while social welfare must also be guaranteed in order to shape sustainable development.

Keywords

Agricultural nanotechnologies Crop production Packaging Plant breeding Plant genetic modification Remediation Water purification 

Notes

Acknowledgements

This research was funded by Ciencia Básica SEP-CONACYT project numbers 151881 and 287225, the Sustainability of Natural Resources and Energy Programs (Cinvestav-Saltillo), and Cinvestav-Zacatenco. G.M.-P. and R.G.-R. received grant-aided support from Becas CONACYT. F.F.-L., F.L.-V., R.G.C.-M., E.V.-N., S.L.-S., I.A.-B., O.E.R.-R., and A.M.-N. received grant-aided support from Sistema Nacional de Investigadores (SNI), Mexico.

Competing interests The authors declare that they have no competing interests.

References

  1. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49CrossRefGoogle Scholar
  2. Azeredo HMC, Mattoso LHC, McHugh TH (2011) Nanocomposites in food packaging—a review. In: Reddy BSR (ed) Advances in diverse industrial applications of nanocomposites. Intech, Croatia, pp 57–78Google Scholar
  3. Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17CrossRefGoogle Scholar
  4. Bishoge OK, Zhang LL, Suntu SL, Jin H, Zewde AA, Qi ZW (2018) Remediation of water and wastewater by using engineered nanomaterials: a review. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 53(6):537–554CrossRefGoogle Scholar
  5. Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49CrossRefGoogle Scholar
  6. Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605CrossRefGoogle Scholar
  7. De la Rosa G, Garcia-Castaneda C, Vazquez-Nuñez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235Google Scholar
  8. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  9. Fernández-Luqueño F, López-Valdez F, Gamero-Melo P, Luna-Suárez S, Aguilera-González EN, Martínez AI, García-Guillermo MS, Hernández-Martínez G, Herrera-Mendoza R, Álvarez-Garza MA, Pérez-Velázquez IR (2013) Heavy metal pollution in drinking water—a global risk for human health: a review. Afr J Environ Sci Technol 7(7):567–584Google Scholar
  10. Fernández-Luqueño F, López-Valdez F, Valerio-Rodríguez MF, Pariona N, Hernández-López JL, García-Ortíz I, López-Baltazar J, Vega-Sánchez MC, Espinoza-Zapata R, Acosta-Gallegos JA (2014) Effect of nanofertilizers on plant growth and development, and their interrelationship with the environment. In: López-Valdez F, Fernández-Luqueño F (eds) Fertilizers: components, uses in agriculture and environmental impacts. Nova, New York, USA, pp 211–224Google Scholar
  11. Fernández-Luqueño F, López-Valdez F, Sarabia-Castillo CR, García-Mayagoitia S, Pérez-Ríos SR (2017a) Bioremediation of polycyclic aromatic hydrocarbons–polluted soils at laboratory and field scale: a review of the literature on plants and microorganisms. In: Naser A, Saravjeet G, Narendra T (eds) Enhancing cleanup of environmental pollutants, vol 1 (biological approaches). Springer, USA, pp 43–64CrossRefGoogle Scholar
  12. Fernández-Luqueño F, López-Valdez F, Pérez-Morales C, García-Mayagoitia S, Sarabia-Castillo CR, Pérez-Ríos SR (2017b) Enhancing decontamination of PAHs-polluted soils: role of organic and mineral amendments. In: Naser A, Saravjeet G, Narendra T (eds) Enhancing cleanup of environmental pollutants, vol 2 (non-biological approaches). Springer, USA, pp 339–368CrossRefGoogle Scholar
  13. Fu YQ, Li LH, Wang PW, Qu J, Fu YP, Wang H, Sun JR, Lu CL (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676Google Scholar
  14. Ge MZ, Cao CY, Huang JY, Zhang XN, Tang YX, Zhou XR, Zhang KQ, Chen Z, Lai YK (2018) Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Hor 3(3):235–260CrossRefGoogle Scholar
  15. Ghasabkolaei N, Choobbasti AJ, Roshan N, Ghasemi SE (2017) Geotechnical properties of the soils modified with nanomaterials: a comprehensive review. Arch Civ Mech Eng 17(3):639–650CrossRefGoogle Scholar
  16. He YZ, Xiang YJ, Zhou YY, Yang Y, Zhang JC, Huang HL, Shang C, Luo L, Gao J, Tang L (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301CrossRefGoogle Scholar
  17. Holmes AB, Gu FX (2016) Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environ Sci Nano 3(5):982–996CrossRefGoogle Scholar
  18. Huang Y, Wang L (2016) Experimental studies on nanomaterials for soil improvement: a review. Environ Earth Sci 75(6):497CrossRefGoogle Scholar
  19. Iranpour B, Haddad A (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53CrossRefGoogle Scholar
  20. Justino CIL, Duarte AC, Rocha-Santos TAP (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors 17(12):2918CrossRefGoogle Scholar
  21. Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98(3):849–864CrossRefGoogle Scholar
  22. Kumar N, Kaur P, Bhatia S (2017) Advances in bio-nanocomposite materials for food packaging: a review. Nutrit Food Sci 47(4):591–606Google Scholar
  23. Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901CrossRefGoogle Scholar
  24. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24(3):1171–1197CrossRefGoogle Scholar
  25. Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897CrossRefGoogle Scholar
  26. Medina-Pérez G, Fernández-Luqueño F, Vazquez-Nuñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (in press) Remediation of polluted soils using nanotechnologies: environmental benefits and risks. Pol J Environ StudGoogle Scholar
  27. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40(2):149–167CrossRefGoogle Scholar
  28. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471PubMedPubMedCentralGoogle Scholar
  29. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172CrossRefGoogle Scholar
  30. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127CrossRefGoogle Scholar
  31. Poulsen R, Cedergreen N, Hayes T, Hansen M (2018) Nitrate: an environmental endocrine disruptor? A review of evidence and research needs. Environ Sci Technol 52(7):3869–3887CrossRefGoogle Scholar
  32. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014CrossRefGoogle Scholar
  33. Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience 8(1):36–42CrossRefGoogle Scholar
  34. Rapini R, Marrazza G (2017) Electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry 118:47–61CrossRefGoogle Scholar
  35. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Faris M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16CrossRefGoogle Scholar
  36. Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL, Doyke MP, Klaenhammer TR (2017) Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol 8:467–492CrossRefGoogle Scholar
  37. Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M (2018) Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 33(2):161–177CrossRefGoogle Scholar
  38. Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, Oh SE, Ahmad S (2017) Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Sci Total Environ 601:756–769CrossRefGoogle Scholar
  39. Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Pack Shelf Life 8:63–70CrossRefGoogle Scholar
  40. Tan WJ, Peralta-Videz JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs—a critical review. Environ Sci Nano 5(2):257–278CrossRefGoogle Scholar
  41. Thomas M, Natarajan TS (2018) TiO2-high surface area materials based composite photocatalytic nanomaterials for degradation of pollutants: a review. In: Tayade RJ, Gandhi V (eds) Photocatalytic nanomaterials for environmental applications, vol 27. Material Research Forum, USA, pp 48–96CrossRefGoogle Scholar
  42. Thome A, Eddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226(4):121CrossRefGoogle Scholar
  43. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300CrossRefGoogle Scholar
  44. Tripathi DK, Tripathi A, Shweta, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Upadhyay NK, Lee Y, Chauhan DK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7Google Scholar
  45. Ullah N, Mansha M, Khan I, Qurashi A (2018) Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC-Trends Anal Chem 100:155–166CrossRefGoogle Scholar
  46. Wang QO, Chen JN, Zhang HY, Lu MZ, Qiu DY, Wen YF, Kong QQ (2011) Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11(3):2208–2214CrossRefGoogle Scholar
  47. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(6):699–712CrossRefGoogle Scholar
  48. Wen J, Fang Y, Zeng GM (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643CrossRefGoogle Scholar
  49. Zhao X, Meng ZG, Wang Y, Chen WJ, Sun CJ, Cui B, Cui JH, Yu ML, Zeng ZH, Guo SD, Luo D, Cheng JQ, Zhang R, Cui HX (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964CrossRefGoogle Scholar
  50. Zou YD, Wang XX, Khan A, Wang PY, Liu YH, Alsaedi A, Hayat T, Wang XK (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304CrossRefGoogle Scholar
  51. Zuverza-Mena N, Martinez-Fernandez D, Du WC, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fabián Fernández-Luqueño
    • 1
  • Gabriela Medina-Pérez
    • 2
  • Fernando López-Valdez
    • 3
  • Rodrigo Gutiérrez-Ramírez
    • 1
  • Rafael G. Campos-Montiel
    • 4
  • Edgar Vázquez-Núñez
    • 5
  • Sandra Loera-Serna
    • 6
  • Isac Almaraz-Buendía
    • 4
  • Oscar Enrique Del Razo-Rodríguez
    • 4
  • Alfredo Madariaga-Navarrete
    • 4
  1. 1.Sustainability of Natural Resources and Energy ProgramsCinvestav-SaltilloRamos ArizpeMexico
  2. 2.Transdisciplinary Doctoral Program in Scientific and Technological Development for the SocietyCinvestav-ZacatencoMexico CityMexico
  3. 3.Agricultural Biotechnology Group, Research Center for Applied Biotechnology (CIBA) —Instituto Politécnico NacionalTlaxcalaMexico
  4. 4.ICAP—Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingoMexico
  5. 5.Department of Chemical, Electronic, and Biomedicine Engineering, Sciences and Engineering DivisionUniversity of GuanajuatoLeon, GuanajuatoMexico
  6. 6.Div. Ciencias Básicas e IngriaUniv. Autónoma Metropolitana AzcapotzalcoMexico CityMexico

Personalised recommendations