Advertisement

Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism

  • Olivia Muriel
  • Miguel Sánchez-Álvarez
  • Raffaele Strippoli
  • Miguel Angel del Pozo
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 57)

Abstract

Caveolae are 60–80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane—ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.

Notes

Acknowledgements

This work was supported by grants SAF2011-25047 and CSD2009-0016 from Spanish Ministry of Science and Innovation (MICINN), SAF2014-51876-R from Spanish Ministry of Economy and Competitiveness (MINECO) and co-funded by FEDER funds, 674/C/2013 from Fundació La Marató de TV3, and AICR 15-0404 from the Worldwide Cancer Research Foundation (to M.A.dP.). The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MEIC), and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Competing Financial Interests

The authors declare no competing financial interests exist.

References

  1. Aboulaich N, Vainonen JP, Stralfors P, Vener AV (2004) Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383:237–248PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23:6967–6979PubMedCrossRefPubMedCentralGoogle Scholar
  3. Almeida RA, Dunlap JR, Oliver SP (2010) Binding of host factors influences internalization and intracellular trafficking of streptococcus uberis in bovine mammary epithelial cells. Vet Med Int 2010:319192PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ariotti N, Fernandez-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG (2014) Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J Cell Biol 204:777–792PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ariotti N, Rae J, Leneva N, Ferguson C, Loo D, Okano S, Hill MM, Walser P, Collins BM, Parton RG (2015) Molecular characterization of caveolin-induced membrane curvature. J Biol Chem 290:24875–24890PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bai L, Deng X, Li J, Wang M, Li Q, An WAD, Cong YS (2011) Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1. Cell Res 21:1088–1101PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ (2011) A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 21:681–693PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez-Rojo M, Breen MR, Gygi SP, Vinten J, Walser PJ, North KN, Hancock JF, Pilch PF, Parton RG (2009) MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185:1259–1273PubMedCrossRefPubMedCentralGoogle Scholar
  10. Benga L, Goethe R, Rohde M, Valentin-Weigand P (2004) Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 6:867–881PubMedCrossRefGoogle Scholar
  11. Bernatchez PN, Bauer PM, Yu J, Prendergast JS, He P, Sessa WC (2005) Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci USA 102:761–766PubMedCrossRefGoogle Scholar
  12. Bitsikas V, Correa IR, Jr., Nichols BJ (2014) Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3:e03970Google Scholar
  13. Bosch M, Mari M, Gross SP, Fernandez-Checa JC, Pol A (2011a) Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic 12:1483–1489PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bosch M, Mari M, Herms A, Fernandez A, Fajardo A, Kassan A, Giralt A, Colell A, Balgoma D, Barbero E, Gonzalez-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gross SP, Garcia-Ruiz C, Perez-Navarro E, Fernandez-Checa JC et al (2011b) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Current Biol 21:681–686CrossRefGoogle Scholar
  15. Boucrot E, Howes MT, Kirchhausen T, Parton RG (2011) Redistribution of caveolae during mitosis. J Cell Sci 124:1965–1972PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bruno C, Sotgia F, Gazzerro M, Minetti C, Lisanti MP (1993) Caveolinopathies. Synonym: Caveolin-3 Deficiency. GeneReviews- University of Washington, Seattle. PMID: 20301559Google Scholar
  17. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367PubMedCrossRefGoogle Scholar
  18. Burgermeister E, Friedrich T, Hitkova I, Regel I, Einwachter H, Zimmermann W, Rocken C, Perren A, Wright MB, Schmid RM, Seger R, Ebert MP (2011) The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor gamma through spatial relocalization at helix 7 of its ligand-binding domain. Mol Cell Biol 31:3497–3510PubMedCrossRefPubMedCentralGoogle Scholar
  19. Byrne DP, Dart C, Rigden DJ (2012) Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS ONE 7:e44879PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: Recruitment of C- terminal Src kinase. J Biol Chem 22:22Google Scholar
  21. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cerezo A, Guadamillas MC, Goetz JG, Sanchez-Perales S, Klein E, Assoian RK, del Pozo MA (2009) The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol 29:5046–5059PubMedCrossRefPubMedCentralGoogle Scholar
  23. Collins BM, Davis MJ, Hancock JF, Parton RG (2012) Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 23:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  24. Conrad PA, Smart EJ, Ying YS, Anderson RG, Bloom GS (1995) Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J Cell Biol 131:1421–1433PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cota CD, Davidson B (2015) Mitotic membrane turnover coordinates differential induction of the heart progenitor lineage. Dev Cell 34:505–519PubMedCrossRefGoogle Scholar
  26. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438PubMedCrossRefPubMedCentralGoogle Scholar
  27. Czarny M, Schnitzer JE (2004) Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 287:H1344–H1352PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chaudhary N, Gomez GA, Howes MT, Lo HP, McMahon KA, Rae JA, Schieber NL, Hill MM, Gaus K, Yap AS, Parton RG (2014) Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 12:e1001832PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Liu HH, Adams E, Baines A, Yu G, Sartor MA, Zhang B, Yi Z, Lin J, Young SG, Schekman R, Ginsburg D (2013) SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. eLife 2:e00444Google Scholar
  30. Cheng JP, Nichols BJ (2016) Caveolae: one function or many? Trends Cell Biol 26:177–189PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, Matile S, Parton RG, Gruenberg J (2008) Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem 283:27871–27880PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chidlow JH Jr, Sessa WC (2010) Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovasc Res 86:219–225PubMedCrossRefPubMedCentralGoogle Scholar
  33. Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488PubMedCrossRefPubMedCentralGoogle Scholar
  34. Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJ, McMahon HT (2007) Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449:923–927PubMedCrossRefPubMedCentralGoogle Scholar
  35. Del Galdo F, Lisanti MP, Jimenez SA (2008) Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20:713–719PubMedCrossRefPubMedCentralGoogle Scholar
  36. del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, Schwartz MA (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7:901–908PubMedCrossRefPubMedCentralGoogle Scholar
  37. Del Pozo MA, Schwartz MA (2007) Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol 17:246–250PubMedCrossRefPubMedCentralGoogle Scholar
  38. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dietzen DJ, Hastings WR, Lublin DM (1995) Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 270:6838–6842PubMedCrossRefPubMedCentralGoogle Scholar
  40. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dupree P, Parton RG, Raposo G, Kurzchalia TV, Simons K (1993) Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J 12:1597–1605PubMedPubMedCentralCrossRefGoogle Scholar
  42. Echarri A, Del Pozo MA (2015) Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J C SciGoogle Scholar
  43. Echarri A, Muriel O, Del Pozo MA (2007) Intracellular trafficking of raft/caveolae domains: insights from integrin signaling. Semin Cell Dev Biol 18:627–637PubMedCrossRefPubMedCentralGoogle Scholar
  44. Echarri A, Muriel O, Pavon DM, Azegrouz H, Escolar F, Terron MC, Sanchez-Cabo F, Martinez F, Montoya MC, Llorca O, Del Pozo MA (2012) Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci 125:3097–3113PubMedCrossRefPubMedCentralGoogle Scholar
  45. Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE (2016) Annexin A1 tethers membrane contact sites that mediate ER to endosome cholesterol transport. Dev Cell 37:473–483PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12(Supplementary 11–18):1–12Google Scholar
  47. Feng S, Wang Y, Wang X, Wang Z, Cui Y, Liu J, Zhao C, Jin M, Zou W (2010) Caveolin-1 gene silencing promotes the activation of PI3K/AKT dependent on Erα36 and the transformation of MCF10ACE. Sci China Life Sci 53:598–605PubMedCrossRefPubMedCentralGoogle Scholar
  48. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814PubMedCrossRefPubMedCentralGoogle Scholar
  49. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP (2004) Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98–105PubMedCrossRefPubMedCentralGoogle Scholar
  50. Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D (2004) Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem 279:14140–14146PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci USA 106:9256–9561PubMedCrossRefPubMedCentralGoogle Scholar
  53. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648PubMedCrossRefPubMedCentralGoogle Scholar
  54. Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93:6448–6453PubMedCrossRefPubMedCentralGoogle Scholar
  55. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166PubMedPubMedCentralGoogle Scholar
  56. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibanez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJ, Garcia R, Keely PJ, Sanchez-Mateos P, Cukierman E, Del Pozo MA (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gottlieb-Abraham E, Shvartsman DE, Donaldson JC, Ehrlich M, Gutman O, Martin GS, Henis YI (2013) Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24:3881–3895PubMedCrossRefPubMedCentralGoogle Scholar
  58. Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA (2007) Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 177:683–694PubMedCrossRefPubMedCentralGoogle Scholar
  59. Guan JL (2004) Cell biology. Integrins, rafts, Rac, and Rho. Science 303:773–774PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11:807–814PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hansen CG, Howard G, Nichols BJ (2011) Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 124:2777–2785PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hansen CG, Shvets E, Howard G, Riento K, Nichols BJ (2013) Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Communications 4:1831CrossRefGoogle Scholar
  63. Hasegawa T, Takeuchi A, Miyaishi O, Xiao H, Mao J, Isobe K (2000) PTRF (polymerase I and transcript-release factor) is tissue-specific and interacts with the BFCOL1 (binding factor of a type-I collagen promoter) zinc-finger transcription factor which binds to the two mouse type-I collagen gene promoters. Biochem J 347(Pt 1):55–59PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hayer A, Stoeber M, Bissig C, Helenius A (2010a) Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11:361–382PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A (2010b) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–629PubMedCrossRefPubMedCentralGoogle Scholar
  66. He K, Yan X, Li N, Dang S, Xu L, Zhao B, Li Z, Lv Z, Fang X, Zhang Y, Chen YG (2015) Internalization of the TGF-beta type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res 25:738–752PubMedCrossRefPubMedCentralGoogle Scholar
  67. Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399PubMedCrossRefPubMedCentralGoogle Scholar
  68. Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RG, Michaely P (2013) Cavin-3 dictates the balance between ERK and Akt signaling. eLife 2:e00905Google Scholar
  70. Hertzog M, Monteiro P, Le Dez G, Chavrier P (2012) Exo70 subunit of the exocyst complex is involved in adhesion-dependent trafficking of caveolin-1. PLoS ONE 7:e52627PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VM, Martin S, Hancock JF, Parton RG (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hoernke M, Mohan J, Larsson E, Blomberg J, Kahra D, Westenhoff S, Schwieger C, Lundmark R (2017) EHD2 restrains dynamics of caveolae by an ATP-dependent, membrane-bound, open conformation. Proc Natl Acad Sci USA 114:E4360–E4369PubMedCrossRefPubMedCentralGoogle Scholar
  73. Howe AK, Juliano RL (2000) Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2:593–600PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893PubMedCrossRefPubMedCentralGoogle Scholar
  75. Izumi Y, Hirai S, Tamai Y, Fujise-Matsuoka A, Nishimura Y, Ohno S (1997) A protein kinase Cδ-binding protein SRBC whose expression is induced by serum starvation. J Biol Chem 272:7381–7389PubMedCrossRefPubMedCentralGoogle Scholar
  76. Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I (1998) Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 17:2855–2864PubMedCrossRefPubMedCentralGoogle Scholar
  77. Joshi B, Bastiani M, Strugnell SS, Boscher C, Parton RG, Nabi IR (2012) Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol 199:425–435PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kang YS, Ko YG, Seo JS (2000) Caveolin internalization by heat shock or hyperosmotic shock. Exp Cell Res 255:221–228PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M, Nemani M, Bridel E, Leite CC, Bertola DR, Semple RK, O’Rahilly S, Dugail I, Capeau J, Lathrop M, Magre J (2008) Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 93:1129–1134PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kirkham M, Nixon SJ, Howes MT, Abi-Rached L, Wakeham DE, Hanzal-Bayer M, Ferguson C, Hill MM, Fernandez-Rojo M, Brown DA, Hancock JF, Brodsky FM, Parton RG (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086PubMedCrossRefPubMedCentralGoogle Scholar
  82. Koch D, Westermann M, Kessels MM, Qualmann B (2012) Ultrastructural freeze-fracture immunolabeling identifies plasma membrane-localized syndapin II as a crucial factor in shaping caveolae. Histochem Cell Biol 138:215–230PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kozera L, White E, Calaghan S (2009) Caveolae act as membrane reserves which limit mechanosensitive I(Cl, swell) channel activation during swelling in the rat ventricular myocyte. PLoS ONE 4:e8312PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kurzchalia TV, Parton RG (1999) Membrane microdomains and caveolae. Curr Opin Cell Biol 11:424–431PubMedCrossRefPubMedCentralGoogle Scholar
  85. Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R (2004) Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279:52132–52140PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, Corvol JC, Campbell DG, Itzen A, Trost M, Muqit MM (2015) Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 34:2840–2861PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biology 179:341–356CrossRefGoogle Scholar
  88. Lamaze C, Tardif N, Dewulf M, Vassilopoulos S, Blouin CM (2017) The caveolae dress code: structure and signaling. Curr Opin Cell Biol 47:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lamaze C, Torrino S (2015) Caveolae and cancer: a new mechanical perspective. Biomed J 38:367–379PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lang AB, John Peter AT, Walter P, Kornmann B (2015) ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J Cell Biol 210:883–890PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lapierre LA, Ducharme NA, Drake KR, Goldenring JR, Kenworthy AK (2012) Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res 318:103–113PubMedCrossRefPubMedCentralGoogle Scholar
  92. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lee H, Xie L, Luo Y, Lee SY, Lawrence DS, Wang XB, Sotgia F, Lisanti MP, Zhang ZY (2006) Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate. Biochemistry 45:234–240PubMedCrossRefPubMedCentralGoogle Scholar
  95. Li G, D’Souza-Schorey C, Barbieri MA, Roberts RL, Klippel A, Williams LT, Stahl PD (1995) Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc Natl Acad Sci USA 92:10207–10211PubMedCrossRefPubMedCentralGoogle Scholar
  96. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190PubMedCrossRefPubMedCentralGoogle Scholar
  97. Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322PubMedCrossRefPubMedCentralGoogle Scholar
  98. Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8:310–317PubMedCrossRefPubMedCentralGoogle Scholar
  99. Liu L, Pilch PF (2016) PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 5Google Scholar
  100. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499–515PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ludwig A, Howard G, Mendoza-Topaz C, Deerinck T, Mackey M, Sandin S, Ellisman MH, Nichols BJ (2013) Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol 11:e1001640PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ludwig A, Nichols BJ, Sandin S (2016) Architecture of the caveolar coat complex. J Cell Sci 129:3077–3083PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700PubMedCrossRefPubMedCentralGoogle Scholar
  104. Maxwell KN, Breslow JL (2005) Proprotein convertase subtilisin kexin 9: the third locus implicated in autosomal dominant hypercholesterolemia. Curr Opin Lipidol 16:167–172PubMedCrossRefPubMedCentralGoogle Scholar
  105. Maxwell KN, Fisher EA, Breslow JL (2005) Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA 102:2069–2074PubMedCrossRefPubMedCentralGoogle Scholar
  106. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–295PubMedPubMedCentralGoogle Scholar
  107. McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RG (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28:1001–1015PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mercier I, Jasmin JF, Pavlides S, Minetti C, Flomenberg N, Pestell RG, Frank PG, Sotgia F, Lisanti MP (2009) Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab Invest 89:614–623PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mercier I, Camacho J, Titchen K, Gonzales DM, Quann K, Bryant KG, Molchansky A, Milliman JN, Whitaker-Menezes D, Sotgia F, Jasmin JF, Schwarting R, Pestell RG, Blagosklonny MV, Lisanti MP (2012) Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol 181:278–293PubMedCrossRefPubMedCentralGoogle Scholar
  110. Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272:25907–25912PubMedCrossRefGoogle Scholar
  111. Mineo C, Ying YS, Chapline C, Jaken S, Anderson RG (1998) Targeting of protein kinase Calpha to caveolae. J Cell Biol 141:601–610PubMedCrossRefPubMedCentralGoogle Scholar
  112. Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE, Malik AB (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mohan J, Moren B, Larsson E, Holst MR, Lundmark R (2015) Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J Cell Sci 128:979–991PubMedCrossRefGoogle Scholar
  114. Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV (1996) Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett 388:143–149PubMedCrossRefGoogle Scholar
  115. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927PubMedCrossRefPubMedCentralGoogle Scholar
  116. Moren B, Shah C, Howes MT, Schieber NL, McMahon HT, Parton RG, Daumke O, Lundmark R (2012) EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell 23:1316–1329PubMedCrossRefPubMedCentralGoogle Scholar
  117. Moreno-Caceres J, Caja L, Mainez J, Mayoral R, Martin-Sanz P, Moreno-Vicente R, Del Pozo MA, Dooley S, Egea G, Fabregat I (2014) Caveolin-1 is required for TGF-beta-induced transactivation of the EGF receptor pathway in hepatocytes through the activation of the metalloprotease TACE/ADAM17. Cell Death Dis 5:e1326PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339PubMedCrossRefGoogle Scholar
  119. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC (2007) Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204:2373–2382PubMedCrossRefPubMedCentralGoogle Scholar
  120. Muriel O, Echarri A, Hellriegel C, Pavon DM, Beccari L, Del Pozo MA (2011) Phosphorylated filamin A regulates actin-linked caveolae dynamics. J Cell Sci 124:2763–2776PubMedCrossRefGoogle Scholar
  121. Musiol A, Gran S, Ehrhardt C, Ludwig S, Grewal T, Gerke V, Rescher U (2013) Annexin A6-balanced late endosomal cholesterol controls influenza A replication and propagation. MBio 4:e00608–e00613PubMedCrossRefPubMedCentralGoogle Scholar
  122. Nabi IR (2009) Cavin fever: regulating caveolae. Nat Cell Biol 11:789–791PubMedCrossRefGoogle Scholar
  123. Nakanishi N, Ogata T, Naito D, Miyagawa K, Taniguchi T, Hamaoka T, Maruyama N, Kasahara T, Nishi M, Matoba S, Ueyama T (2016) MURC deficiency in smooth muscle attenuates pulmonary hypertension. Nat Commun 7:12417PubMedCrossRefPubMedCentralGoogle Scholar
  124. Nassoy P, Lamaze C (2012) Stressing caveolae new role in cell mechanics. Trends Cell Biol 22:381–389PubMedCrossRefGoogle Scholar
  125. Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116:4707–4714PubMedCrossRefGoogle Scholar
  126. Nixon SJ, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton RG (2007) Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci 120:2151–2161PubMedCrossRefGoogle Scholar
  127. Norambuena A, Schwartz MA (2011) Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Mol Biol Cell 22:3456–3464PubMedCrossRefPubMedCentralGoogle Scholar
  128. Nystrom FH, Chen H, Cong LN, Li Y, Quon MJ (1999) Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol 13:2013–2024PubMedCrossRefGoogle Scholar
  129. Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T, Harada K, Takahashi T, Shioi T, Matsubara H, Oh H (2008) MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol 28:3424–3436PubMedCrossRefPubMedCentralGoogle Scholar
  130. Ogata T, Naito D, Nakanishi N, Hayashi YK, Taniguchi T, Miyagawa K, Hamaoka T, Maruyama N, Matoba S, Ikeda K, Yamada H, Oh H, Ueyama T (2014) MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors. Proc Natl Acad Sci USA 111:3811–3816PubMedCrossRefGoogle Scholar
  131. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422PubMedCrossRefPubMedCentralGoogle Scholar
  132. Orlichenko L, Huang B, Krueger E, McNiven MA (2006) Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem 281:4570–4579PubMedCrossRefPubMedCentralGoogle Scholar
  133. Osmani N, Pontabry J, Comelles J, Fekonja N, Goetz JG, Riveline D, Georges-Labouesse E, Labouesse M (2017) An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Mol Biol CellGoogle Scholar
  134. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211PubMedCrossRefPubMedCentralGoogle Scholar
  135. Parat MO, Anand-Apte B, Fox PL (2003) Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 14:3156–3168PubMedCrossRefPubMedCentralGoogle Scholar
  136. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112PubMedCrossRefPubMedCentralGoogle Scholar
  137. Parton RG, Howes MT (2010) Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 191:439–441PubMedCrossRefPubMedCentralGoogle Scholar
  138. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194PubMedCrossRefPubMedCentralGoogle Scholar
  139. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215PubMedCrossRefPubMedCentralGoogle Scholar
  140. Parton RG, Molero JC, Floetenmeyer M, Green KM, James DE (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277:46769–46778PubMedCrossRefPubMedCentralGoogle Scholar
  141. Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM (2007) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J Official Publ Fed Am Soc Exp Biol 21:1565–1574Google Scholar
  142. Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320PubMedCrossRefPubMedCentralGoogle Scholar
  143. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483PubMedCrossRefPubMedCentralGoogle Scholar
  144. Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133PubMedCrossRefPubMedCentralGoogle Scholar
  145. Pilch PF, Liu L (2011) Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22:318–324PubMedCrossRefPubMedCentralGoogle Scholar
  146. Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG (2004) Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 15:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  147. Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB (2003) Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14:4997–5010PubMedCrossRefPubMedCentralGoogle Scholar
  148. Prieto-Sanchez RM, Berenjeno IM, Bustelo XR (2006) Involvement of the Rho/Rac family member RhoG in caveolar endocytosis. Oncogene 25:2961–2973PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rahman A, Sward K (2009) The role of caveolin-1 in cardiovascular regulation. Acta Physiol (Oxf) 195:231–245CrossRefGoogle Scholar
  150. Rauch MC, Ocampo ME, Bohle J, Amthauer R, Yanez AJ, Rodriguez-Gil JE, Slebe JC, Reyes JG, Concha II (2006) Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase I in caveolae microdomains of rat spermatogenic cells. J Cell Physiol 207:397–406PubMedCrossRefPubMedCentralGoogle Scholar
  151. Razani B, Lisanti MP (2001) Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am J Physiol Cell Physiol 281:C1241–C1250PubMedCrossRefPubMedCentralGoogle Scholar
  152. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP (2001) Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 276:6727–6738PubMedCrossRefPubMedCentralGoogle Scholar
  153. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467PubMedCrossRefPubMedCentralGoogle Scholar
  154. Richter T, Floetenmeyer M, Ferguson C, Galea J, Goh J, Lindsay MR, Morgan GP, Marsh BJ, Parton RG (2008) High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9:893–909PubMedCrossRefPubMedCentralGoogle Scholar
  155. Ritz D, Vuk M, Kirchner P, Bug M, Schutz S, Hayer A, Bremer S, Lusk C, Baloh RH, Lee H, Glatter T, Gstaiger M, Aebersold R, Weihl CC, Meyer H (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13:1116–1123PubMedCrossRefPubMedCentralGoogle Scholar
  156. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729PubMedCrossRefPubMedCentralGoogle Scholar
  157. Rizzo V, Sung A, Oh P, Schnitzer JE (1998) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:26323–26329PubMedCrossRefPubMedCentralGoogle Scholar
  158. Robenek H, Weissen-Plenz G, Severs NJ (2008) Freeze-fracture replica immunolabelling reveals caveolin-1 in the human cardiomyocyte plasma membrane. J Cell Mol Med 12:2519–2521PubMedCrossRefPubMedCentralGoogle Scholar
  159. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sala-Vila A, Navarro-Lerida I, Sanchez-Alvarez M, Bosch M, Calvo C, Lopez JA, Calvo E, Ferguson C, Giacomello M, Serafini A, Scorrano L, Enriquez JA, Balsinde J, Parton RG, Vazquez J, Pol A, Del Pozo MA (2016) Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep 6:27351PubMedCrossRefPubMedCentralGoogle Scholar
  161. Sanguinetti AR, Mastick CC (2003) c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal 15:289–298PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sanguinetti AR, Cao H, Corley Mastick C (2003) Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochem J 376:159–168PubMedCrossRefPubMedCentralGoogle Scholar
  163. Santibanez JF, Blanco FJ, Garrido-Martin EM, Sanz-Rodriguez F, del Pozo MA, Bernabeu C (2008) Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res 77:791–799PubMedCrossRefPubMedCentralGoogle Scholar
  164. Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, Cohen MA, Chakraborty S, Wang H, Spooner E, Ploegh H, Gsponer J, Korolchuk VI, Jaenisch R (2013) Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell reports 5:1302–1315PubMedCrossRefPubMedCentralGoogle Scholar
  165. Scott CC, Vossio S, Vacca F, Snijder B, Larios J, Schaad O, Guex N, Kuznetsov D, Martin O, Chambon M, Turcatti G, Pelkmans L, Gruenberg J (2015) Wnt directs the endosomal flux of LDL-derived cholesterol and lipid droplet homeostasis. EMBO Rep 16:741–752PubMedCrossRefPubMedCentralGoogle Scholar
  166. Scheiffele P, Verkade P, Fra AM, Virta H, Simons K, Ikonen E (1998) Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol 140:795–806PubMedCrossRefPubMedCentralGoogle Scholar
  167. Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 127:1233–1243PubMedCrossRefPubMedCentralGoogle Scholar
  168. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135PubMedCrossRefPubMedCentralGoogle Scholar
  169. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346PubMedCrossRefPubMedCentralGoogle Scholar
  170. Schlegel A, Schwab RB, Scherer PE, Lisanti MP (1999) A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274:22660–22667PubMedCrossRefPubMedCentralGoogle Scholar
  171. Schlegel A, Arvan P, Lisanti MP (2001) Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 276:4398–4408PubMedCrossRefPubMedCentralGoogle Scholar
  172. Schlormann W, Steiniger F, Richter W, Kaufmann R, Hause G, Lemke C, Westermann M (2010) The shape of caveolae is omega-like after glutaraldehyde fixation and cup-like after cryofixation. Histochem Cell Biol 133:223–228PubMedCrossRefPubMedCentralGoogle Scholar
  173. Schwartz EA, Reaven E, Topper JN, Tsao PS (2005) Transforming growth factor-beta receptors localize to caveolae and regulate endothelial nitric oxide synthase in normal human endothelial cells. Biochem J 390:199–206PubMedCrossRefPubMedCentralGoogle Scholar
  174. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96:635–642PubMedCrossRefPubMedCentralGoogle Scholar
  175. Seemann E, Sun M, Krueger S, Troger J, Hou W, Haag N, Schuler S, Westermann M, Huebner CA, Romeike B, Kessels MM, Qualmann B (2017) Deciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination. eLife 6Google Scholar
  176. Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S (2011) Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 124:2032–2040PubMedCrossRefPubMedCentralGoogle Scholar
  177. Shack S, Wang XT, Kokkonen GC, Gorospe M, Longo DL, Holbrook NJ (2003) Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Mol Cell Biol 23:2407–2414PubMedCrossRefPubMedCentralGoogle Scholar
  178. Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400PubMedCrossRefPubMedCentralGoogle Scholar
  179. Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ (2010) β-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J Cell Sci 123:3061–3070PubMedCrossRefPubMedCentralGoogle Scholar
  180. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851PubMedPubMedCentralGoogle Scholar
  181. Shi F, Sottile J (2008) Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 121:2360–2371PubMedCrossRefPubMedCentralGoogle Scholar
  182. Shin JS, Gao Z, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–788PubMedCrossRefPubMedCentralGoogle Scholar
  183. Shvets E, Bitsikas V, Howard G, Hansen CG, Nichols BJ (2015) Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat Commun 6:6867PubMedCrossRefPubMedCentralGoogle Scholar
  184. Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM 2nd (2013) Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim Biophys Acta 1831:1311–1321PubMedCrossRefPubMedCentralGoogle Scholar
  185. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  186. Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413PubMedCrossRefPubMedCentralGoogle Scholar
  187. Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427–29435PubMedCrossRefPubMedCentralGoogle Scholar
  188. Smart EJ, Ying YS, Anderson RG (1995) Hormonal regulation of caveolae internalization. J Cell Biol 131:929–938PubMedCrossRefPubMedCentralGoogle Scholar
  189. Song KS, Sargiacomo M, Galbiati F, Parenti M, Lisanti MP (1997) Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation. Cell Mol Biol (Noisy-le-grand) 43:293–303Google Scholar
  190. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165PubMedCrossRefPubMedCentralGoogle Scholar
  191. Stoeber M, Stoeck IK, Hanni C, Bleck CK, Balistreri G, Helenius A (2012) Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31:2350–2364PubMedCrossRefPubMedCentralGoogle Scholar
  192. Stoeber M, Schellenberger P, Siebert CA, Leyrat C, Helenius A, Grunewald K (2016) Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc Natl Acad Sci USA 113:E8069–E8078PubMedCrossRefPubMedCentralGoogle Scholar
  193. Strippoli R, Loureiro J, Moreno V, Benedicto I, Perez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT, Calvo E, Vazquez J, Lopez Cabrera M, del Pozo MA (2014) Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 7:102–123CrossRefPubMedCentralGoogle Scholar
  194. Strippoli R, Loureiro J, Moreno V, Benedicto I, Perez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT, Calvo E, Vazquez J, Lopez Cabrera M, del Pozo MA (2015) Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 7:102–123PubMedCrossRefPubMedCentralGoogle Scholar
  195. Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD (2009) Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20:4531–4540PubMedCrossRefPubMedCentralGoogle Scholar
  196. Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K, Asada S, Takahashi T, Matsubara H, Oh H (2008) MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am J Physiol Cell Physiol 295:C490–C498PubMedCrossRefPubMedCentralGoogle Scholar
  197. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261PubMedCrossRefPubMedCentralGoogle Scholar
  198. Tang W, Feng X, Zhang S, Ren Z, Liu Y, Yang B, lv B, Cai Y, Xia J, Ge N (2015) Caveolin-1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway. Cell Physiol Biochem 36:1223–1236PubMedCrossRefPubMedCentralGoogle Scholar
  199. Thorn H, Stenkula KG, Karlsson M, Ortegren U, Nystrom FH, Gustavsson J, Stralfors P (2003) Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell 14:3967–3976PubMedCrossRefPubMedCentralGoogle Scholar
  200. Tourkina E, Richard M, Gooz P, Bonner M, Pannu J, Harley R, Bernatchez PN, Sessa WC, Silver RM, Hoffman S (2008) Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 294:L843–L861PubMedCrossRefPubMedCentralGoogle Scholar
  201. Uittenbogaard A, Smart EJ (2000) Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem 275:25595–25599PubMedCrossRefPubMedCentralGoogle Scholar
  202. Villasenor R, Kalaidzidis Y, Zerial M (2016) Signal processing by the endosomal system. Curr Opin Cell Biol 39:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  203. Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J (2005) Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 1717:34–40PubMedCrossRefPubMedCentralGoogle Scholar
  204. Walser PJ, Ariotti N, Howes M, Ferguson C, Webb R, Schwudke D, Leneva N, Cho KJ, Cooper L, Rae J, Floetenmeyer M, Oorschot VM, Skoglund U, Simons K, Hancock JF, Parton RG (2012) Constitutive formation of caveolae in a bacterium. Cell 150:752–763PubMedCrossRefPubMedCentralGoogle Scholar
  205. Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, Ifedigbo E, Xu X, Oury TD, Kaminski N, Choi AM (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906PubMedCrossRefPubMedCentralGoogle Scholar
  206. Wickstrom SA, Lange A, Hess MW, Polleux J, Spatz JP, Kruger M, Pfaller K, Lambacher A, Bloch W, Mann M, Huber LA, Fassler R (2010) Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell 19:574–858PubMedCrossRefPubMedCentralGoogle Scholar
  207. Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288:C494–C506PubMedCrossRefPubMedCentralGoogle Scholar
  208. Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279:51630–51646PubMedCrossRefPubMedCentralGoogle Scholar
  209. Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, Maitra A, Tomlinson G, Gazdar AF, Weissman BE, Bowcock AM, Baer R, Minna JD (2001) Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res 61:7943–7949PubMedPubMedCentralGoogle Scholar
  210. Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458PubMedCrossRefPubMedCentralGoogle Scholar
  211. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, Hotta N, Shimada Y, Isomura H, Suzuki M, Fujimoto T, Takahashi T (2016) ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun 7:10060PubMedCrossRefPubMedCentralGoogle Scholar
  212. Yamamoto M, Toya Y, Jensen RA, Ishikawa Y (1999) Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp Cell Res 247:380–388PubMedCrossRefGoogle Scholar
  213. Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG Jr, Ishikawa Y (1998) Caveolin is an activator of insulin receptor signaling. J Biol Chem 273:26962–26968PubMedCrossRefGoogle Scholar
  214. Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11:213–223PubMedCrossRefPubMedCentralGoogle Scholar
  215. Yeh YC, Parekh AB (2015) Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression. Mol Cell Biol 35:1341–1349PubMedCrossRefPubMedCentralGoogle Scholar
  216. Yeow I, Howard G, Chadwick J, Mendoza-Topaz C, Hansen CG, Nichols BJ, Shvets E (2017) EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr Biol 27(19):2951–2962PubMedCrossRefPubMedCentralGoogle Scholar
  217. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116:1284–1291PubMedCrossRefPubMedCentralGoogle Scholar
  218. Yuan T, Hong S, Yao Y, Liao K (2007) Glut-4 is translocated to both caveolae and non-caveolar lipid rafts, but is partially internalized through caveolae in insulin-stimulated adipocytes. Cell Res 17:772–782PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zhang B, Peng F, Wu D, Ingram AJ, Gao B, Krepinsky JC (2007) Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 19:1690–1700PubMedCrossRefPubMedCentralGoogle Scholar
  220. Zhang M, Dwyer NK, Love DC, Cooney A, Comly M, Neufeld E, Pentchev PG, Blanchette-Mackie EJ, Hanover JA (2001) Cessation of rapid late endosomal tubulovesicular trafficking in Niemann-Pick type C1 disease. Proc Natl Acad Sci USA 98:4466–4471PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zilberberg A, Yaniv A, Gazit A (2004) The low density lipoprotein receptor-1, LRP1, interacts with the human frizzled-1 (HFz1) and down-regulates the canonical Wnt signaling pathway. J Biol Chem 279:17535–17542PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD (2016) Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 27:2090–2106PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olivia Muriel
    • 1
    • 2
  • Miguel Sánchez-Álvarez
    • 1
  • Raffaele Strippoli
    • 1
    • 3
  • Miguel Angel del Pozo
    • 1
  1. 1.Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology AreaCentro Nacional de Investigaciones CardiovascularesMadridSpain
  2. 2.Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
  3. 3.Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Cellular Biotechnologies and HematologySapienza University of RomeRomeItaly

Personalised recommendations