Advertisement

GTPases Rac1 and Ras Signaling from Endosomes

  • Francesc Tebar
  • Carlos Enrich
  • Carles Rentero
  • Thomas Grewal
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 57)

Abstract

The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.

References

  1. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51.  https://doi.org/10.1038/nrm3255CrossRefPubMedGoogle Scholar
  2. Alanko J, Ivaska J (2016) Endosomes: emerging platforms for integrin-mediated FAK signalling. Trends Cell Biol 26(6):391–398.  https://doi.org/10.1016/j.tcb.2016.02.001CrossRefPubMedGoogle Scholar
  3. Alanko J, Mai A, Jacquemet G, Schauer K, Kaukonen R, Saari M, Goud B, Ivaska J (2015) Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 17(11):1412–1421.  https://doi.org/10.1038/ncb3250CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez-Moya B, Barcelo C, Tebar F, Jaumot M, Agell N (2011) CaM interaction and Ser181 phosphorylation as new K-Ras signaling modulators. Small GTPases 2(2):99–103.  https://doi.org/10.4161/sgtp.2.2.15555CrossRefPubMedPubMedCentralGoogle Scholar
  5. Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF (2000) H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 20(7):2475–2487CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aran V, Prior IA (2013) Compartmentalized Ras signaling differentially contributes to phenotypic outputs. Cell Signal 25(9):1748–1753.  https://doi.org/10.1016/j.cellsig.2013.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ariotti N, Fernandez-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG (2014) Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J Cell Biol 204(5):777–792.  https://doi.org/10.1083/jcb.201307055CrossRefPubMedPubMedCentralGoogle Scholar
  8. Balbis A, Parmar A, Wang Y, Baquiran G, Posner BI (2007) Compartmentalization of signaling-competent epidermal growth factor receptors in endosomes. Endocrinology 148(6):2944–2954.  https://doi.org/10.1210/en.2006-1674CrossRefPubMedGoogle Scholar
  9. Ballester R, Furth ME, Rosen OM (1987) Phorbol ester- and protein kinase C-mediated phosphorylation of the cellular Kirsten ras gene product. J Biol Chem 262(6):2688–2695PubMedGoogle Scholar
  10. Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827.  https://doi.org/10.1146/annurev.bi.56.070187.004023CrossRefPubMedGoogle Scholar
  11. Barrow-McGee R, Kermorgant S (2014) Met endosomal signalling: in the right place, at the right time. Int J Biochem Cell Biol 49:69–74.  https://doi.org/10.1016/j.biocel.2014.01.009CrossRefPubMedGoogle Scholar
  12. Bergeron JJ, Posner BI, Josefsberg Z, Sikstrom R (1978) Intracellular polypeptide hormone receptors. The demonstration of specific binding sites for insulin and human growth hormone in Golgi fractions isolated from the liver of female rats. J Biol Chem 253(11):4058–4066PubMedGoogle Scholar
  13. Bhagatji P, Leventis R, Rich R, Lin CJ, Silvius JR (2010) Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. Biophys J 99(10):3327–3335.  https://doi.org/10.1016/j.bpj.2010.10.001CrossRefPubMedPubMedCentralGoogle Scholar
  14. Birukova AA, Alekseeva E, Mikaelyan A, Birukov KG (2007) HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. Faseb J 21(11):2776–2786.  https://doi.org/10.1096/fj.06-7660comCrossRefPubMedGoogle Scholar
  15. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, Miura J, Wiener HH, Wright L, Saba SG, Yim D, Fein A, Perez de Castro I, Li C, Thompson CB, Cox AD, Philips MR (2006) PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21(4):481–493.  https://doi.org/10.1016/j.molcel.2006.01.012CrossRefPubMedGoogle Scholar
  17. Bolis A, Corbetta S, Cioce A, de Curtis I (2003) Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur J Neurosci 18(9):2417–2424CrossRefPubMedGoogle Scholar
  18. Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20(4):427–436.  https://doi.org/10.1016/j.ceb.2008.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7(8):568–579.  https://doi.org/10.1038/nrm1985CrossRefPubMedGoogle Scholar
  20. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689PubMedGoogle Scholar
  21. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877.  https://doi.org/10.1016/j.cell.2007.05.018CrossRefPubMedGoogle Scholar
  22. Bosco EE, Mulloy JC, Zheng Y (2009) Rac1 GTPase: a “Rac” of all trades. Cell Mol Life Sci 66(3):370–374.  https://doi.org/10.1007/s00018-008-8552-xCrossRefPubMedGoogle Scholar
  23. Bouchet J, Del Rio-Iniguez I, Lasserre R, Aguera-Gonzalez S, Cuche C, Danckaert A, McCaffrey MW, Di Bartolo V, Alcover A (2016) Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation. EMBO J 35(11):1160–1174.  https://doi.org/10.15252/embj.201593274CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A, Garcia MA, Arroyo AG, Montoya MC (2007) MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J 26(6):1499–1510.  https://doi.org/10.1038/sj.emboj.7601606CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bravo-Cordero JJ, Cordani M, Soriano SF, Diez B, Munoz-Agudo C, Casanova-Acebes M, Boullosa C, Guadamillas MC, Ezkurdia I, Gonzalez-Pisano D, Del Pozo MA, Montoya MC (2016) A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP. J Cell Sci 129(8):1734–1749.  https://doi.org/10.1242/jcs.174920CrossRefPubMedGoogle Scholar
  26. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29(4):356–370.  https://doi.org/10.1002/bies.20558CrossRefPubMedPubMedCentralGoogle Scholar
  27. Calvo F, Agudo-Ibanez L, Crespo P (2010) The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. BioEssays 32(5):412–421.  https://doi.org/10.1002/bies.200900155CrossRefPubMedGoogle Scholar
  28. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rosse C, Chavrier P (2016) Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu Rev Cell Dev Biol 32:555–576.  https://doi.org/10.1146/annurev-cellbio-111315-125227CrossRefPubMedGoogle Scholar
  29. Cerione RA (2004) Cdc42: new roads to travel. Trends Cell Biol 14(3):127–132.  https://doi.org/10.1016/j.tcb.2004.01.008CrossRefPubMedGoogle Scholar
  30. Chae YC, Kim JH, Kim KL, Kim HW, Lee HY, Heo WD, Meyer T, Suh PG, Ryu SH (2008) Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane. Mol Biol Cell 19(7):3111–3123.  https://doi.org/10.1091/mbc.E07-04-0337CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, Ismail SA, Hedberg C, Hanzal-Bayer M, Venkitaraman AR, Wittinghofer A, Bastiaens PI (2011) The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14(2):148–158.  https://doi.org/10.1038/ncb2394CrossRefPubMedGoogle Scholar
  32. Chang EC, Philips MR (2006) Spatial segregation of Ras signaling: new evidence from fission yeast. Cell Cycle 5(17):1936–1939.  https://doi.org/10.4161/cc.5.17.3187CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chao WT, Daquinag AC, Ashcroft F, Kunz J (2010) Type I PIPK-alpha regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation. J Cell Biol 190(2):247–262.  https://doi.org/10.1083/jcb.200911110CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cheng CM, Chang EC (2011) Busy traveling Ras. Cell Cycle 10(8):1180–1181.  https://doi.org/10.4161/cc.10.8.15259CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cheng CM, Li H, Gasman S, Huang J, Schiff R, Chang EC (2011) Compartmentalized Ras proteins transform NIH 3T3 cells with different efficiencies. Mol Cell Biol 31(5):983–997.  https://doi.org/10.1128/MCB.00137-10CrossRefPubMedGoogle Scholar
  36. Cho KJ, Park JH, Piggott AM, Salim AA, Gorfe AA, Parton RG, Capon RJ, Lacey E, Hancock JF (2012) Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem 287(52):43573–43584.  https://doi.org/10.1074/jbc.M112.424457CrossRefPubMedPubMedCentralGoogle Scholar
  37. Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98(1):69–80.  https://doi.org/10.1016/S0092-8674(00)80607-8CrossRefPubMedGoogle Scholar
  38. Criss AK, Ahlgren DM, Jou TS, McCormick BA, Casanova JE (2001) The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 114(Pt 7):1331–1341PubMedGoogle Scholar
  39. Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, Boggon TJ (2013) RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci U S A 110(3):912–917.  https://doi.org/10.1073/pnas.1220895110CrossRefPubMedPubMedCentralGoogle Scholar
  40. De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J (2015) Integrin traffic—the update. J Cell Sci 128(5):839–852.  https://doi.org/10.1242/jcs.161653CrossRefPubMedPubMedCentralGoogle Scholar
  41. Debanne MT, Evans WH, Flint N, Regoeczi E (1982) Receptor-rich intracellular membrane vesicles transporting asialotransferrin and insulin in liver. Nature 298(5872):398–400CrossRefPubMedGoogle Scholar
  42. del Pozo MA, Price LS, Alderson NB, Ren XD, Schwartz MA (2000) Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19(9):2008–2014.  https://doi.org/10.1093/emboj/19.9.2008CrossRefPubMedPubMedCentralGoogle Scholar
  43. del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4(3):232–239.  https://doi.org/10.1038/ncb759CrossRefPubMedGoogle Scholar
  44. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363.  https://doi.org/10.1016/j.tcb.2005.05.001CrossRefPubMedGoogle Scholar
  45. DerMardirossian C, Schnelzer A, Bokoch GM (2004) Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 15(1):117–127.  https://doi.org/10.1016/j.molcel.2004.05.019CrossRefPubMedGoogle Scholar
  46. Di Guglielmo GM, Baass PC, Ou WJ, Posner BI, Bergeron JJ (1994) Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13(18):4269–4277PubMedPubMedCentralCrossRefGoogle Scholar
  47. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421.  https://doi.org/10.1038/ncb975CrossRefPubMedGoogle Scholar
  48. Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264(28):16378–16382PubMedGoogle Scholar
  49. Dobrowolski R, De Robertis EM (2011) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13(1):53–60.  https://doi.org/10.1038/nrm3244CrossRefPubMedPubMedCentralGoogle Scholar
  50. Donaldson JG, Porat-Shliom N, Cohen LA (2009) Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 21(1):1–6.  https://doi.org/10.1016/j.cellsig.2008.06.020CrossRefPubMedGoogle Scholar
  51. Doughman RL, Firestone AJ, Wojtasiak ML, Bunce MW, Anderson RA (2003) Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. J Biol Chem 278(25):23036–23045.  https://doi.org/10.1074/jbc.M211397200CrossRefPubMedGoogle Scholar
  52. Downward J (1996) Control of ras activation. Cancer Surv 27:87–100PubMedGoogle Scholar
  53. Duan Y, Li F, Tan K, Liu H, Li Y, Liu Y, Kong X, Tang Y, Wu G, Yin Y (2015) Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 47(5):857–867.  https://doi.org/10.1007/s00726-015-1937-xCrossRefPubMedGoogle Scholar
  54. Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, Della Pelle P, Song Y, Yano S, Mino-Kenudson M, Benes CH, Engelman JA (2013) PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci U S A 110(52):21124–21129.  https://doi.org/10.1073/pnas.1314124110CrossRefPubMedPubMedCentralGoogle Scholar
  55. Eisenberg S, Henis YI (2008) Interactions of Ras proteins with the plasma membrane and their roles in signaling. Cell Signal 20(1):31–39.  https://doi.org/10.1016/j.cellsig.2007.07.012CrossRefPubMedGoogle Scholar
  56. Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279(33):34922–34930.  https://doi.org/10.1074/jbc.M312697200CrossRefPubMedGoogle Scholar
  57. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635.  https://doi.org/10.1038/nature01148CrossRefPubMedGoogle Scholar
  58. Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3(4):297–307.  https://doi.org/10.1016/j.molonc.2009.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  59. Figueroa C, Taylor J, Vojtek AB (2001) Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem 276(30):28219–28225.  https://doi.org/10.1074/jbc.M101763200CrossRefPubMedGoogle Scholar
  60. Finkielstein CV, Overduin M, Capelluto DG (2006) Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1. J Biol Chem 281(37):27317–27326.  https://doi.org/10.1074/jbc.M605560200CrossRefPubMedGoogle Scholar
  61. Fivaz M, Meyer T (2005) Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J Cell Biol 170(3):429–441.  https://doi.org/10.1083/jcb.200409157CrossRefPubMedPubMedCentralGoogle Scholar
  62. Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21(5):833–841.  https://doi.org/10.1091/mbc.E09-09-0756CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fotiadou PP, Takahashi C, Rajabi HN, Ewen ME (2007) Wild-type NRas and KRas perform distinct functions during transformation. Mol Cell Biol 27(19):6742–6755.  https://doi.org/10.1128/MCB.00234-07CrossRefPubMedPubMedCentralGoogle Scholar
  64. Frasa MA, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, Goldenring J, Seabra MC, Rak A, Ahmadian MR, Braga VM (2010) Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr Biol 20(3):198–208.  https://doi.org/10.1016/j.cub.2009.12.053CrossRefPubMedGoogle Scholar
  65. Frittoli E, Palamidessi A, Disanza A, Scita G (2011) Secretory and endo/exocytic trafficking in invadopodia formation: the MT1-MMP paradigm. Eur J Cell Biol 90(2–3):108–114.  https://doi.org/10.1016/j.ejcb.2010.04.007CrossRefPubMedGoogle Scholar
  66. Frost JA, Khokhlatchev A, Stippec S, White MA, Cobb MH (1998) Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J Biol Chem 273(43):28191–28198CrossRefPubMedGoogle Scholar
  67. Garcia-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JR, Johnsen CH, Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, Enrich C, Grewal T, Rentero C (2016) Annexin A6 and late endosomal cholesterol modulate integrin recycling and cell migration. J Biol Chem 291(3):1320–1335.  https://doi.org/10.1074/jbc.M115.683557CrossRefPubMedGoogle Scholar
  68. Garcia-Weber D, Millan J (2016) Parallels between single cell migration and barrier formation: the case of RhoB and Rac1 trafficking. Small GTPases 1–7.  https://doi.org/10.1080/21541248.2016.1231655
  69. Gelabert-Baldrich M, Soriano-Castell D, Calvo M, Lu A, Vina-Vilaseca A, Rentero C, Pol A, Grinstein S, Enrich C, Tebar F (2014) Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association. Faseb J 28(7):3023–3037.  https://doi.org/10.1096/fj.13-241158CrossRefPubMedGoogle Scholar
  70. Ghai R, Mobli M, Norwood SJ, Bugarcic A, Teasdale RD, King GF, Collins BM (2011) Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A 108(19):7763–7768.  https://doi.org/10.1073/pnas.1017110108CrossRefPubMedPubMedCentralGoogle Scholar
  71. Gomez GA, Daniotti JL (2005) H-Ras dynamically interacts with recycling endosomes in CHO-K1 cells: involvement of Rab5 and Rab11 in the trafficking of H-Ras to this pericentriolar endocytic compartment. J Biol Chem 280(41):34997–35010.  https://doi.org/10.1074/jbc.M506256200CrossRefPubMedGoogle Scholar
  72. Gomez GA, Daniotti JL (2007) Electrical properties of plasma membrane modulate subcellular distribution of K-Ras. FEBS J 274(9):2210–2228.  https://doi.org/10.1111/j.1742-4658.2007.05758.xCrossRefPubMedGoogle Scholar
  73. Gonnord P, Blouin CM, Lamaze C (2012) Membrane trafficking and signaling: two sides of the same coin. Semin Cell Dev Biol 23(2):154–164.  https://doi.org/10.1016/j.semcdb.2011.11.002CrossRefPubMedGoogle Scholar
  74. Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170(2):261–272.  https://doi.org/10.1083/jcb.200502063CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, McCammon JA (2007) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50(4):674–684.  https://doi.org/10.1021/jm061053fCrossRefPubMedGoogle Scholar
  76. Gould GW, Lippincott-Schwartz J (2009) New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol 10(4):287–292.  https://doi.org/10.1038/nrm2652CrossRefPubMedPubMedCentralGoogle Scholar
  77. Grassart A, Dujeancourt A, Lazarow PB, Dautry-Varsat A, Sauvonnet N (2008) Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep 9(4):356–362.  https://doi.org/10.1038/embor.2008.28CrossRefPubMedPubMedCentralGoogle Scholar
  78. Grassart A, Meas-Yedid V, Dufour A, Olivo-Marin JC, Dautry-Varsat A, Sauvonnet N (2010) Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolin-independent endocytosis. Traffic 11(8):1079–1091.  https://doi.org/10.1111/j.1600-0854.2010.01075.xCrossRefPubMedGoogle Scholar
  79. Grewal T, Enrich C (2006) Molecular mechanisms involved in Ras inactivation: the annexin A6-p120GAP complex. BioEssays 28(12):1211–1220.  https://doi.org/10.1002/bies.20503CrossRefPubMedGoogle Scholar
  80. Grizot S, Faure J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E (2001) Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation. Biochemistry 40(34):10007–10013CrossRefPubMedGoogle Scholar
  81. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A, Collard JG (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77(4):537–549CrossRefPubMedGoogle Scholar
  82. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514CrossRefPubMedGoogle Scholar
  83. Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4(5):373–384.  https://doi.org/10.1038/nrm1105CrossRefPubMedGoogle Scholar
  84. Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57(7):1167–1177CrossRefPubMedGoogle Scholar
  85. Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139CrossRefPubMedGoogle Scholar
  86. Harrington AW, St Hillaire C, Zweifel LS, Glebova NO, Philippidou P, Halegoua S, Ginty DD (2011) Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 146(3):421–434.  https://doi.org/10.1016/j.cell.2011.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpaa K, Laakkonen P, Peranen J (2006) Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci 119(Pt 23):4866–4877.  https://doi.org/10.1242/jcs.03275CrossRefPubMedGoogle Scholar
  88. Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191(3):615–629.  https://doi.org/10.1083/jcb.201003086CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hayes S, Chawla A, Corvera S (2002) TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158(7):1239–1249CrossRefPubMedPubMedCentralGoogle Scholar
  90. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701.  https://doi.org/10.1038/nrm2476CrossRefPubMedGoogle Scholar
  91. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314(5804):1458–1461.  https://doi.org/10.1126/science.1134389CrossRefPubMedPubMedCentralGoogle Scholar
  92. Herbst JJ, Opresko LK, Walsh BJ, Lauffenburger DA, Wiley HS (1994) Regulation of postendocytic trafficking of the epidermal growth factor receptor through endosomal retention. J Biol Chem 269(17):12865–12873PubMedGoogle Scholar
  93. Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129(7):1287–1292.  https://doi.org/10.1242/jcs.182873CrossRefPubMedPubMedCentralGoogle Scholar
  94. Hoffman GR, Nassar N, Cerione RA (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100(3):345–356CrossRefPubMedGoogle Scholar
  95. Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG (1997) Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278(5342):1464–1466CrossRefPubMedGoogle Scholar
  96. Howe CL, Valletta JS, Rusnak AS, Mobley WC (2001) NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32(5):801–814CrossRefPubMedGoogle Scholar
  97. Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K (1993) Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123(1):35–45CrossRefPubMedGoogle Scholar
  98. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500.  https://doi.org/10.1038/emboj.2011.286CrossRefPubMedPubMedCentralGoogle Scholar
  99. Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P (1998) Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J 17(21):6241–6249.  https://doi.org/10.1093/emboj/17.21.6241CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ismail SA, Chen YX, Rusinova A, Chandra A, Bierbaum M, Gremer L, Triola G, Waldmann H, Bastiaens PI, Wittinghofer A (2011) Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 7(12):942–949.  https://doi.org/10.1038/nchembio.686CrossRefPubMedGoogle Scholar
  101. Jezyk MR, Snyder JT, Gershberg S, Worthylake DK, Harden TK, Sondek J (2006) Crystal structure of Rac1 bound to its effector phospholipase C-beta2. Nat Struct Mol Biol 13(12):1135–1140.  https://doi.org/10.1038/nsmb1175CrossRefPubMedGoogle Scholar
  102. Jiang X, Sorkin A (2002) Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 13(5):1522–1535.  https://doi.org/10.1091/mbc.01-11-0552CrossRefPubMedPubMedCentralGoogle Scholar
  103. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S (2011) A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 13(7):827–837.  https://doi.org/10.1038/ncb2257CrossRefPubMedGoogle Scholar
  104. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135(7):1175–1187.  https://doi.org/10.1016/j.cell.2008.12.009CrossRefPubMedGoogle Scholar
  105. Jones MC, Caswell PT, Norman JC (2006) Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 18(5):549–557.  https://doi.org/10.1016/j.ceb.2006.08.003CrossRefPubMedGoogle Scholar
  106. Joneson T, White MA, Wigler MH, Bar-Sagi D (1996) Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271(5250):810–812CrossRefPubMedGoogle Scholar
  107. Jovic M, Sharma M, Rahajeng J, Caplan S (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25(1):99–112.  https://doi.org/10.14670/HH-25.99CrossRefPubMedPubMedCentralGoogle Scholar
  108. Jura N, Scotto-Lavino E, Sobczyk A, Bar-Sagi D (2006) Differential modification of Ras proteins by ubiquitination. Mol Cell 21(5):679–687.  https://doi.org/10.1016/j.molcel.2006.02.011CrossRefPubMedGoogle Scholar
  109. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F, Scita G (2016) RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 17(7):1061–1080.  https://doi.org/10.15252/embr.201642032CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kermorgant S, Parker PJ (2008) Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol 182(5):855–863.  https://doi.org/10.1083/jcb.200806076CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kiyokawa E, Hara S, Nakamura T, Matsuda M (2006) Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci 97(1):8–15.  https://doi.org/10.1111/j.1349-7006.2006.00141.xCrossRefPubMedGoogle Scholar
  112. Kunita R, Otomo A, Mizumura H, Suzuki-Utsunomiya K, Hadano S, Ikeda JE (2007) The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytosis. J Biol Chem 282(22):16599–16611.  https://doi.org/10.1074/jbc.M610682200CrossRefPubMedGoogle Scholar
  113. Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382(6587):177–179.  https://doi.org/10.1038/382177a0CrossRefPubMedGoogle Scholar
  114. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A (2001) Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7(3):661–671CrossRefGoogle Scholar
  115. Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ (2002) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 4(8):621–625.  https://doi.org/10.1038/ncb833CrossRefPubMedGoogle Scholar
  116. Lanzetti L, Di Fiore PP (2008) Endocytosis and cancer: an ‘insider’ network with dangerous liaisons. Traffic 9(12):2011–2021.  https://doi.org/10.1111/j.1600-0854.2008.00816.xCrossRefPubMedGoogle Scholar
  117. Laude AJ, Prior IA (2008) Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J Cell Sci 121(Pt 4):421–427.  https://doi.org/10.1242/jcs.020107CrossRefPubMedGoogle Scholar
  118. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6(2):112–126.  https://doi.org/10.1038/nrm1571CrossRefPubMedGoogle Scholar
  119. Leventis R, Silvius JR (1998) Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry 37(20):7640–7648.  https://doi.org/10.1021/bi973077hCrossRefPubMedGoogle Scholar
  120. Li S, Wang Q, Wang Y, Chen X, Wang Z (2009) PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration. Mol Endocrinol 23(6):901–913.  https://doi.org/10.1210/me.2008-0368CrossRefPubMedPubMedCentralGoogle Scholar
  121. Llado A, Tebar F, Calvo M, Moreto J, Sorkin A, Enrich C (2004) Protein kinaseCdelta-calmodulin crosstalk regulates epidermal growth factor receptor exit from early endosomes. Mol Biol Cell 15(11):4877–4891.  https://doi.org/10.1091/mbc.E04-02-0127CrossRefPubMedPubMedCentralGoogle Scholar
  122. Llado A, Timpson P, Vila de Muga S, Moreto J, Pol A, Grewal T, Daly RJ, Enrich C, Tebar F (2008) Protein kinase Cdelta and calmodulin regulate epidermal growth factor receptor recycling from early endosomes through Arp2/3 complex and cortactin. Mol Biol Cell 19(1):17–29.  https://doi.org/10.1091/mbc.E07-05-0411CrossRefPubMedPubMedCentralGoogle Scholar
  123. Lobert VH, Stenmark H (2011) Cell polarity and migration: emerging role for the endosomal sorting machinery. Physiology (Bethesda) 26(3):171–180.  https://doi.org/10.1152/physiol.00054.2010CrossRefGoogle Scholar
  124. Lopez-Alcala C, Alvarez-Moya B, Villalonga P, Calvo M, Bachs O, Agell N (2008) Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization. J Biol Chem 283(16):10621–10631.  https://doi.org/10.1074/jbc.M706238200CrossRefPubMedGoogle Scholar
  125. Lu A, Tebar F, Alvarez-Moya B, Lopez-Alcala C, Calvo M, Enrich C, Agell N, Nakamura T, Matsuda M, Bachs O (2009) A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J Cell Biol 184(6):863–879.  https://doi.org/10.1083/jcb.200807186CrossRefPubMedPubMedCentralGoogle Scholar
  126. Luo Y, Cheng Z, Dixon CJ, Hall JF, Taylor E, Boarder MR (2011) Endosomal signalling of epidermal growth factor receptors contributes to EGF-stimulated cell cycle progression in primary hepatocytes. Eur J Pharmacol 654(2):173–180.  https://doi.org/10.1016/j.ejphar.2010.11.038CrossRefPubMedGoogle Scholar
  127. Magee T, Marshall C (1999) New insights into the interaction of Ras with the plasma membrane. Cell 98(1):9–12.  https://doi.org/10.1016/S0092-8674(00)80601-7CrossRefPubMedGoogle Scholar
  128. Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG (2002) Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417(6891):867–871.  https://doi.org/10.1038/nature00848CrossRefPubMedGoogle Scholar
  129. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3(6):459–465.  https://doi.org/10.1038/nrc1097CrossRefPubMedGoogle Scholar
  130. Marcos-Ramiro B, Garcia-Weber D, Barroso S, Feito J, Ortega MC, Cernuda-Morollon E, Reglero-Real N, Fernandez-Martin L, Duran MC, Alonso MA, Correas I, Cox S, Ridley AJ, Millan J (2016) RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border. J Cell Biol 213(3):385–402.  https://doi.org/10.1083/jcb.201504038CrossRefPubMedPubMedCentralGoogle Scholar
  131. Marei H, Malliri A (2016) Rac1 in human diseases: the therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 1–25.  https://doi.org/10.1080/21541248.2016.1211398
  132. Margiotta A, Progida C, Bakke O, Bucci C (2017) Rab7a regulates cell migration through Rac1 and vimentin. Biochim Biophys Acta 2(1864):367–381.  https://doi.org/10.1016/j.bbamcr.2016.11.020CrossRefGoogle Scholar
  133. Marsh M, Bolzau E, Helenius A (1983) Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32(3):931–940CrossRefPubMedGoogle Scholar
  134. Marshall CJ (1996) Ras effectors. Curr Opin Cell Biol 8(2):197–204CrossRefPubMedGoogle Scholar
  135. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612.  https://doi.org/10.1038/nrm2216CrossRefPubMedGoogle Scholar
  136. Mellman I, Yarden Y (2013) Endocytosis and cancer. Cold Spring Harb Perspect Biol 5(12):a016949.  https://doi.org/10.1101/cshperspect.a016949CrossRefPubMedPubMedCentralGoogle Scholar
  137. Menard L, Parker PJ, Kermorgant S (2014) Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat Commun 5:3907.  https://doi.org/10.1038/ncomms4907CrossRefPubMedGoogle Scholar
  138. Miaczynska M, Bar-Sagi D (2010) Signaling endosomes: seeing is believing. Curr Opin Cell Biol 22(4):535–540.  https://doi.org/10.1016/j.ceb.2010.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  139. Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116(3):445–456CrossRefPubMedGoogle Scholar
  140. Michaelson D, Silletti J, Murphy G, D’Eustachio P, Rush M, Philips MR (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152(1):111–126CrossRefPubMedPubMedCentralGoogle Scholar
  141. Misaki R, Morimatsu M, Uemura T, Waguri S, Miyoshi E, Taniguchi N, Matsuda M, Taguchi T (2010) Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis. J Cell Biol 191(1):23–29.  https://doi.org/10.1083/jcb.200911143CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411(6841):1065–1068.  https://doi.org/10.1038/35082594CrossRefPubMedGoogle Scholar
  143. Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800.  https://doi.org/10.1146/annurev.immunol.24.021605.090723CrossRefPubMedGoogle Scholar
  144. Moreto J, Llado A, Vidal-Quadras M, Calvo M, Pol A, Enrich C, Tebar F (2008) Calmodulin modulates H-Ras mediated Raf-1 activation. Cell Signal 20(6):1092–1103.  https://doi.org/10.1016/j.cellsig.2008.01.022CrossRefPubMedGoogle Scholar
  145. Moreto J, Vidal-Quadras M, Pol A, Santos E, Grewal T, Enrich C, Tebar F (2009) Differential involvement of H- and K-Ras in Raf-1 activation determines the role of calmodulin in MAPK signaling. Cell Signal 21(12):1827–1836.  https://doi.org/10.1016/j.cellsig.2009.07.018CrossRefPubMedGoogle Scholar
  146. Murga C, Zohar M, Teramoto H, Gutkind JS (2002) Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene 21(2):207–216.  https://doi.org/10.1038/sj.onc.1205036CrossRefPubMedGoogle Scholar
  147. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 106(42):17615–17622.  https://doi.org/10.1073/pnas.0906541106CrossRefPubMedPubMedCentralGoogle Scholar
  148. Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M (2009) The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 28(5):477–489.  https://doi.org/10.1038/emboj.2008.308CrossRefPubMedPubMedCentralGoogle Scholar
  149. Nancy V, Callebaut I, El Marjou A, de Gunzburg J (2002) The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J Biol Chem 277(17):15076–15084.  https://doi.org/10.1074/jbc.M109983200CrossRefPubMedGoogle Scholar
  150. Navarro-Lerida I, Sanchez-Perales S, Calvo M, Rentero C, Zheng Y, Enrich C, Del Pozo MA (2012) A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 31(3):534–551.  https://doi.org/10.1038/emboj.2011.446CrossRefPubMedGoogle Scholar
  151. Newlaczyl AU, Hood FE, Coulson JM, Prior IA (2014) Decoding RAS isoform and codon-specific signalling. Biochem Soc Trans 42(4):742–746.  https://doi.org/10.1042/BST20140057CrossRefPubMedPubMedCentralGoogle Scholar
  152. Niv H, Gutman O, Henis YI, Kloog Y (1999) Membrane interactions of a constitutively active GFP-Ki-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J Biol Chem 274(3):1606–1613CrossRefPubMedGoogle Scholar
  153. Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157(5):865–872.  https://doi.org/10.1083/jcb.200202009CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ohashi E, Tanabe K, Henmi Y, Mesaki K, Kobayashi Y, Takei K (2011) Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments. PLoS ONE 6(5):e19942.  https://doi.org/10.1371/journal.pone.0019942CrossRefPubMedPubMedCentralGoogle Scholar
  155. Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11(8):545–554CrossRefPubMedGoogle Scholar
  156. Omerovic J, Hammond DE, Clague MJ, Prior IA (2008) Ras isoform abundance and signalling in human cancer cell lines. Oncogene 27(19):2754–2762.  https://doi.org/10.1038/sj.onc.1210925CrossRefPubMedGoogle Scholar
  157. Onken B, Wiener H, Philips MR, Chang EC (2006) Compartmentalized signaling of Ras in fission yeast. Proc Natl Acad Sci U S A 103(24):9045–9050.  https://doi.org/10.1073/pnas.0603318103CrossRefPubMedPubMedCentralGoogle Scholar
  158. Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134(1):135–147.  https://doi.org/10.1016/j.cell.2008.05.034CrossRefPubMedGoogle Scholar
  159. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23.  https://doi.org/10.1186/1478-811X-8-23CrossRefPubMedPubMedCentralGoogle Scholar
  160. Peranen J, Auvinen P, Virta H, Wepf R, Simons K (1996) Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J Cell Biol 135(1):153–167CrossRefPubMedGoogle Scholar
  161. Pfeffer SR (2009) Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 583(23):3811–3816.  https://doi.org/10.1016/j.febslet.2009.10.075CrossRefPubMedPubMedCentralGoogle Scholar
  162. Philips MR (2012) Ras hitchhikes on PDE6delta. Nat Cell Biol 14(2):128–129.  https://doi.org/10.1038/ncb2429CrossRefPubMedPubMedCentralGoogle Scholar
  163. Pinilla-Macua I, Watkins SC, Sorkin A (2016) Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes. Proc Natl Acad Sci U S A 113(8):2122–2127.  https://doi.org/10.1073/pnas.1520301113CrossRefPubMedPubMedCentralGoogle Scholar
  164. Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23(4):393–403.  https://doi.org/10.1016/j.ceb.2011.03.008CrossRefPubMedGoogle Scholar
  165. Pol A, Calvo M, Enrich C (1998) Isolated endosomes from quiescent rat liver contain the signal transduction machinery. Differential distribution of activated Raf-1 and Mek in the endocytic compartment. FEBS Lett 441(1):34–38CrossRefPubMedGoogle Scholar
  166. Porat-Shliom N, Kloog Y, Donaldson JG (2008) A unique platform for H-Ras signaling involving clathrin-independent endocytosis. Mol Biol Cell 19(3):765–775.  https://doi.org/10.1091/mbc.E07-08-0841CrossRefPubMedPubMedCentralGoogle Scholar
  167. Porther N, Barbieri MA (2015) The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells. Small GTPases 6(3):135–144.  https://doi.org/10.1080/21541248.2015.1050152CrossRefPubMedPubMedCentralGoogle Scholar
  168. Posner BI, Patel B, Verma AK, Bergeron JJ (1980) Uptake of insulin by plasmalemma and Golgi subcellular fractions of rat liver. J Biol Chem 255(2):735–741PubMedGoogle Scholar
  169. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508.  https://doi.org/10.1016/j.cell.2010.03.011CrossRefPubMedGoogle Scholar
  170. Price LS, Langeslag M, ten Klooster JP, Hordijk PL, Jalink K, Collard JG (2003) Calcium signaling regulates translocation and activation of Rac. J Biol Chem 278(41):39413–39421.  https://doi.org/10.1074/jbc.M302083200CrossRefPubMedGoogle Scholar
  171. Prior IA, Hancock JF (2012) Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 23(2):145–153.  https://doi.org/10.1016/j.semcdb.2011.09.002CrossRefPubMedGoogle Scholar
  172. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160(2):165–170.  https://doi.org/10.1083/jcb.200209091CrossRefPubMedPubMedCentralGoogle Scholar
  173. Puthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P, Thorn K, Taunton J, Weiner OD, Parton RG, von Zastrow M (2010) Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143(5):761–773.  https://doi.org/10.1016/j.cell.2010.10.003CrossRefPubMedPubMedCentralGoogle Scholar
  174. Qiu RG, Chen J, McCormick F, Symons M (1995) A role for Rho in Ras transformation. Proc Natl Acad Sci U S A 92(25):11781–11785CrossRefPubMedPubMedCentralGoogle Scholar
  175. Rajalingam K, Schreck R, Rapp UR, Albert S (2007) Ras oncogenes and their downstream targets. Biochim Biophys Acta 1773(8):1177–1195.  https://doi.org/10.1016/j.bbamcr.2007.01.012CrossRefPubMedGoogle Scholar
  176. Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343(2):417–433.  https://doi.org/10.1016/j.jmb.2004.08.056CrossRefPubMedGoogle Scholar
  177. Revach OY, Winograd-Katz SE, Samuels Y, Geiger B (2016) The involvement of mutant Rac1 in the formation of invadopodia in cultured melanoma cells. Exp Cell Res 343(1):82–88.  https://doi.org/10.1016/j.yexcr.2016.02.003CrossRefPubMedPubMedCentralGoogle Scholar
  178. Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vila de Muga S, Alvarez-Guaita A, Conway JR, Wood P, Cairns R, Lykopoulou L, Grinberg D, Vilageliu L, Bosch M, Heeren J, Blasi J, Timpson P, Pol A, Tebar F, Murray RZ, Grewal T, Enrich C (2014) Cholesterol regulates Syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep 7(3):883–897.  https://doi.org/10.1016/j.celrep.2014.03.043CrossRefPubMedGoogle Scholar
  179. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722PubMedGoogle Scholar
  180. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16(10):522–529.  https://doi.org/10.1016/j.tcb.2006.08.006CrossRefPubMedGoogle Scholar
  181. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749.  https://doi.org/10.1016/j.cell.2005.06.043CrossRefPubMedGoogle Scholar
  182. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716):1746–1752.  https://doi.org/10.1126/science.1105654CrossRefPubMedGoogle Scholar
  183. Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471.  https://doi.org/10.1016/j.cell.2010.04.007CrossRefPubMedGoogle Scholar
  184. Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJ, Raposo G, van der Sluijs P, Bonifacino JS (2008) Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol 183(3):513–526.  https://doi.org/10.1083/jcb.200804048CrossRefPubMedPubMedCentralGoogle Scholar
  185. Rojas AM, Fuentes G, Rausell A, Valencia A (2012) The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196(2):189–201.  https://doi.org/10.1083/jcb.201103008CrossRefPubMedPubMedCentralGoogle Scholar
  186. Roland JT, Kenworthy AK, Peranen J, Caplan S, Goldenring JR (2007) Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3. Mol Biol Cell 18(8):2828–2837.  https://doi.org/10.1091/mbc.E07-02-0169CrossRefPubMedPubMedCentralGoogle Scholar
  187. Roy S, Wyse B, Hancock JF (2002) H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol Cell Biol 22(14):5128–5140CrossRefPubMedPubMedCentralGoogle Scholar
  188. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2(2):133–142.  https://doi.org/10.1038/nrc725CrossRefPubMedGoogle Scholar
  189. Samuel MS, Lourenco FC, Olson MF (2011) K-Ras mediated murine epidermal tumorigenesis is dependent upon and associated with elevated Rac1 activity. PLoS ONE 6(2):e17143.  https://doi.org/10.1371/journal.pone.0017143CrossRefPubMedPubMedCentralGoogle Scholar
  190. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303.  https://doi.org/10.1016/j.cell.2010.02.024CrossRefPubMedPubMedCentralGoogle Scholar
  191. Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michiels F, Collard JG (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143(5):1385–1398CrossRefPubMedPubMedCentralGoogle Scholar
  192. Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S, Santambrogio M, Lanzetti L, Bussolino F, Ivaska J, Serini G (2012) The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 22(10):1479–1501.  https://doi.org/10.1038/cr.2012.110CrossRefPubMedPubMedCentralGoogle Scholar
  193. Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC (2011) Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 4(163):ra13.  https://doi.org/10.1126/scisignal.2001518
  194. Sauvonnet N, Dujeancourt A, Dautry-Varsat A (2005) Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 168(1):155–163.  https://doi.org/10.1083/jcb.200406174CrossRefPubMedPubMedCentralGoogle Scholar
  195. Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA (2002) Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 12(21):1852–1857CrossRefPubMedGoogle Scholar
  196. Schenck A, Goto-Silva L, Collinet C, Rhinn M, Giner A, Habermann B, Brand M, Zerial M (2008) The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133(3):486–497.  https://doi.org/10.1016/j.cell.2008.02.044CrossRefPubMedGoogle Scholar
  197. Schiefermeier N, Scheffler JM, de Araujo ME, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickstrom SA, Lange A, Wunderlich W, Fassler R, Teis D, Huber LA (2014) The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. J Cell Biol 205(4):525–540.  https://doi.org/10.1083/jcb.201310043CrossRefPubMedPubMedCentralGoogle Scholar
  198. Schmick M, Kraemer A, Bastiaens PI (2015) Ras moves to stay in place. Trends Cell Biol 25(4):190–197.  https://doi.org/10.1016/j.tcb.2015.02.004CrossRefPubMedGoogle Scholar
  199. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19(26):3013–3020.  https://doi.org/10.1038/sj.onc.1203621CrossRefPubMedGoogle Scholar
  200. Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463(7280):464–473.  https://doi.org/10.1038/nature08910CrossRefPubMedGoogle Scholar
  201. Scott CC, Vacca F, Gruenberg J (2014) Endosome maturation, transport and functions. Semin Cell Dev Biol 31:2–10.  https://doi.org/10.1016/j.semcdb.2014.03.034CrossRefPubMedGoogle Scholar
  202. Shafaq-Zadah M, Gomes-Santos CS, Bardin S, Maiuri P, Maurin M, Iranzo J, Gautreau A, Lamaze C, Caswell P, Goud B, Johannes L (2016) Persistent cell migration and adhesion rely on retrograde transport of beta(1) integrin. Nat Cell Biol 18(1):54–64.  https://doi.org/10.1038/ncb3287CrossRefPubMedGoogle Scholar
  203. Shenoy SK, Lefkowitz RJ (2011) Beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533.  https://doi.org/10.1016/j.tips.2011.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  204. Shibasaki Y, Ishihara H, Kizuki N, Asano T, Oka Y, Yazaki Y (1997) Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem 272(12):7578–7581CrossRefPubMedGoogle Scholar
  205. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–219.  https://doi.org/10.1016/j.devcel.2008.06.012CrossRefPubMedGoogle Scholar
  206. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92(1):273–366.  https://doi.org/10.1152/physrev.00005.2011CrossRefPubMedPubMedCentralGoogle Scholar
  207. Silvius JR, Bhagatji P, Leventis R, Terrone D (2006) K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol Biol Cell 17(1):192–202.  https://doi.org/10.1091/mbc.E05-05-0408CrossRefPubMedPubMedCentralGoogle Scholar
  208. Soriano-Castell D, Chavero A, Rentero C, Bosch M, Vidal-Quadras M, Pol A, Enrich C, Tebar F (2017) ROCK1 is a novel Rac1 effector to regulate tubular endocytic membrane formation during clathrinindependent endocytosis. Sci Rep 7(1):6866.  https://doi.org/10.1038/s41598-017-07130-x
  209. Sorkin A, von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3(8):600–614.  https://doi.org/10.1038/nrm883CrossRefPubMedGoogle Scholar
  210. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10(9):609–622.  https://doi.org/10.1038/nrm2748CrossRefPubMedPubMedCentralGoogle Scholar
  211. Stasyk T, Huber LA (2016) Spatio-temporal parameters of endosomal signaling in cancer: implications for new treatment options. J Cell Biochem 117(4):836–843.  https://doi.org/10.1002/jcb.25418CrossRefPubMedGoogle Scholar
  212. Sturge J, Wienke D, Isacke CM (2006) Endosomes generate localized Rho-ROCK-MLC2-based contractile signals via Endo180 to promote adhesion disassembly. J Cell Biol 175(2):337–347.  https://doi.org/10.1083/jcb.200602125CrossRefPubMedPubMedCentralGoogle Scholar
  213. Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H, Sakagami H, Kondo H, Nozawa S, Aiba A, Katsuki M (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17(26):3427–3433.  https://doi.org/10.1038/sj.onc.1202595CrossRefPubMedGoogle Scholar
  214. Sun Y, Buki KG, Ettala O, Vaaraniemi JP, Vaananen HK (2005) Possible role of direct Rac1-Rab7 interaction in ruffled border formation of osteoclasts. J Biol Chem 280(37):32356–32361.  https://doi.org/10.1074/jbc.M414213200CrossRefPubMedGoogle Scholar
  215. Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280(35):31141–31148.  https://doi.org/10.1074/jbc.M504113200CrossRefPubMedGoogle Scholar
  216. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1(1):73–82CrossRefPubMedGoogle Scholar
  217. Taub N, Teis D, Ebner HL, Hess MW, Huber LA (2007) Late endosomal traffic of the epidermal growth factor receptor ensures spatial and temporal fidelity of mitogen-activated protein kinase signaling. Mol Biol Cell 18(12):4698–4710.  https://doi.org/10.1091/mbc.E07-02-0098CrossRefPubMedPubMedCentralGoogle Scholar
  218. Tebar F, Villalonga P, Sorkina T, Agell N, Sorkin A, Enrich C (2002) Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Mol Biol Cell 13(6):2057–2068.  https://doi.org/10.1091/mbc.01-12-0571CrossRefPubMedPubMedCentralGoogle Scholar
  219. Teis D, Huber LA (2003) The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 60(10):2020–2033.  https://doi.org/10.1007/s00018-003-3010-2CrossRefPubMedGoogle Scholar
  220. Teis D, Wunderlich W, Huber LA (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3(6):803–814CrossRefPubMedGoogle Scholar
  221. Teis D, Taub N, Kurzbauer R, Hilber D, de Araujo ME, Erlacher M, Offterdinger M, Villunger A, Geley S, Bohn G, Klein C, Hess MW, Huber LA (2006) p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J Cell Biol 175(6):861–868.  https://doi.org/10.1083/jcb.200607025CrossRefPubMedPubMedCentralGoogle Scholar
  222. ten Klooster JP, Hordijk PL (2007) Targeting and localized signalling by small GTPases. Biol Cell 99(1):1–12.  https://doi.org/10.1042/BC20060071CrossRefPubMedGoogle Scholar
  223. ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL (2006) Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol 172(5):759–769.  https://doi.org/10.1083/jcb.200509096CrossRefPubMedPubMedCentralGoogle Scholar
  224. Tolias K, Carpenter CL (2000) In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol 325:190–200CrossRefPubMedGoogle Scholar
  225. Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL (2000) Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10(3):153–156CrossRefPubMedGoogle Scholar
  226. Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24(1):26–34.  https://doi.org/10.1016/j.tcb.2013.11.002CrossRefPubMedPubMedCentralGoogle Scholar
  227. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791CrossRefPubMedGoogle Scholar
  228. Tsutsumi K, Fujioka Y, Tsuda M, Kawaguchi H, Ohba Y (2009) Visualization of Ras-PI3K interaction in the endosome using BiFC. Cell Signal 21(11):1672–1679.  https://doi.org/10.1016/j.cellsig.2009.07.004CrossRefPubMedGoogle Scholar
  229. Valdez G, Philippidou P, Rosenbaum J, Akmentin W, Shao Y, Halegoua S (2007) Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A 104(30):12270–12275.  https://doi.org/10.1073/pnas.0702819104CrossRefPubMedPubMedCentralGoogle Scholar
  230. van den Bout I, Divecha N (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122(Pt 21):3837–3850.  https://doi.org/10.1242/jcs.056127CrossRefPubMedGoogle Scholar
  231. Vartak N, Bastiaens P (2010) Spatial cycles in G-protein crowd control. EMBO J 29(16):2689–2699.  https://doi.org/10.1038/emboj.2010.184CrossRefPubMedPubMedCentralGoogle Scholar
  232. Vidal C, Geny B, Melle J, Jandrot-Perrus M, Fontenay-Roupie M (2002) Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood 100(13):4462–4469.  https://doi.org/10.1182/blood.V100.13.4462CrossRefPubMedGoogle Scholar
  233. Vidal-Quadras M, Gelabert-Baldrich M, Soriano-Castell D, Llado A, Rentero C, Calvo M, Pol A, Enrich C, Tebar F (2011) Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis. Traffic 12(12):1879–1896.  https://doi.org/10.1111/j.1600-0854.2011.01274.xCrossRefPubMedGoogle Scholar
  234. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274(5295):2086–2089CrossRefPubMedGoogle Scholar
  235. Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10(12):842–857.  https://doi.org/10.1038/nrc2960CrossRefPubMedPubMedCentralGoogle Scholar
  236. Vilardaga JP, Jean-Alphonse FG, Gardella TJ (2014) Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol 10(9):700–706.  https://doi.org/10.1038/nchembio.1611CrossRefPubMedPubMedCentralGoogle Scholar
  237. Villalonga P, Lopez-Alcala C, Bosch M, Chiloeches A, Rocamora N, Gil J, Marais R, Marshall CJ, Bachs O, Agell N (2001) Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol 21(21):7345–7354.  https://doi.org/10.1128/MCB.21.21.7345-7354.2001CrossRefPubMedPubMedCentralGoogle Scholar
  238. Villasenor R, Kalaidzidis Y, Zerial M (2016) Signal processing by the endosomal system. Curr Opin Cell Biol 39:53–60.  https://doi.org/10.1016/j.ceb.2016.02.002CrossRefPubMedGoogle Scholar
  239. von Zastrow M, Sorkin A (2007) Signaling on the endocytic pathway. Curr Opin Cell Biol 19(4):436–445.  https://doi.org/10.1016/j.ceb.2007.04.021CrossRefGoogle Scholar
  240. Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3(7):e233.  https://doi.org/10.1371/journal.pbio.0030233CrossRefPubMedPubMedCentralGoogle Scholar
  241. Walsh AB, Bar-Sagi D (2001) Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem 276(19):15609–15615.  https://doi.org/10.1074/jbc.M010573200CrossRefPubMedGoogle Scholar
  242. Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22(20):7279–7290CrossRefPubMedPubMedCentralGoogle Scholar
  243. Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4(10):981–988.  https://doi.org/10.1038/nn720CrossRefPubMedGoogle Scholar
  244. Webb BA, Zhou S, Eves R, Shen L, Jia L, Mak AS (2006) Phosphorylation of cortactin by p21-activated kinase. Arch Biochem Biophys 456(2):183–193.  https://doi.org/10.1016/j.abb.2006.06.011CrossRefPubMedGoogle Scholar
  245. Weernink PA, Meletiadis K, Hommeltenberg S, Hinz M, Ishihara H, Schmidt M, Jakobs KH (2004) Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. J Biol Chem 279(9):7840–7849.  https://doi.org/10.1074/jbc.M312737200CrossRefPubMedGoogle Scholar
  246. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J 25(1):1–12.  https://doi.org/10.1038/sj.emboj.7600759CrossRefPubMedGoogle Scholar
  247. Wiesner C, El Azzouzi K, Linder S (2013) A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages. J Cell Sci 126(Pt 13):2820–2833.  https://doi.org/10.1242/jcs.122358CrossRefPubMedGoogle Scholar
  248. Williams KC, Coppolino MG (2011) Phosphorylation of membrane type 1-matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J Biol Chem 286(50):43405–43416.  https://doi.org/10.1074/jbc.M111.297069CrossRefPubMedPubMedCentralGoogle Scholar
  249. Wittinghofer A, Herrmann C (1995) Ras-effector interactions, the problem of specificity. FEBS Lett 369(1):52–56CrossRefPubMedGoogle Scholar
  250. Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971.  https://doi.org/10.1146/annurev-biochem-062708-134043CrossRefPubMedGoogle Scholar
  251. Wu C, Lai CF, Mobley WC (2001) Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci 21(15):5406–5416CrossRefPubMedGoogle Scholar
  252. Xu L, Lubkov V, Taylor LJ, Bar-Sagi D (2010) Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol 20(15):1372–1377.  https://doi.org/10.1016/j.cub.2010.06.051CrossRefPubMedPubMedCentralGoogle Scholar
  253. Yan H, Jahanshahi M, Horvath EA, Liu HY, Pfleger CM (2010) Rabex-5 ubiquitin ligase activity restricts Ras signaling to establish pathway homeostasis in Drosophila. Curr Biol 20(15):1378–1382.  https://doi.org/10.1016/j.cub.2010.06.058CrossRefPubMedPubMedCentralGoogle Scholar
  254. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687):809–812.  https://doi.org/10.1038/31735CrossRefPubMedGoogle Scholar
  255. Yang Y, Du J, Hu Z, Liu J, Tian Y, Zhu Y, Wang L, Gu L (2011) Activation of Rac1-PI3K/Akt is required for epidermal growth factor-induced PAK1 activation and cell migration in MDA-MB-231 breast cancer cells. J Biomed Res 25(4):237–245.  https://doi.org/10.1016/S1674-8301(11)60032-8CrossRefPubMedPubMedCentralGoogle Scholar
  256. Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313(5785):347–351.  https://doi.org/10.1126/science.1129551CrossRefPubMedGoogle Scholar
  257. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860):210–213.  https://doi.org/10.1126/science.1152066CrossRefPubMedGoogle Scholar
  258. Yokoe H, Meyer T (1996) Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol 14(10):1252–1256.  https://doi.org/10.1038/nbt1096-1252CrossRefPubMedGoogle Scholar
  259. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117.  https://doi.org/10.1038/35052055CrossRefPubMedGoogle Scholar
  260. Zheng ZY, Chang EC (2014) A bimolecular fluorescent complementation screen reveals complex roles of endosomes in Ras-mediated signaling. Methods Enzymol 535:25–38.  https://doi.org/10.1016/B978-0-12-397925-4.00002-XCrossRefPubMedGoogle Scholar
  261. Zheng ZY, Cheng CM, Fu XR, Chen LY, Xu L, Terrillon S, Wong ST, Bar-Sagi D, Songyang Z, Chang EC (2012a) CHMP6 and VPS4A mediate the recycling of Ras to the plasma membrane to promote growth factor signaling. Oncogene 31(43):4630–4638.  https://doi.org/10.1038/onc.2011.607CrossRefPubMedPubMedCentralGoogle Scholar
  262. Zheng ZY, Xu L, Bar-Sagi D, Chang EC (2012b) Escorting Ras. Small GTPases 3(4):236–239.  https://doi.org/10.4161/sgtp.20460CrossRefPubMedPubMedCentralGoogle Scholar
  263. Zhou Y, Hancock JF (2015) Ras nanoclusters: Versatile lipid-based signaling platforms. Biochim Biophys Acta 1853(4):841–849.  https://doi.org/10.1016/j.bbamcr.2014.09.008CrossRefPubMedGoogle Scholar
  264. Zhou P, Porcionatto M, Pilapil M, Chen Y, Choi Y, Tolias KF, Bikoff JB, Hong EJ, Greenberg ME, Segal RA (2007) Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55(1):53–68.  https://doi.org/10.1016/j.neuron.2007.05.030CrossRefPubMedPubMedCentralGoogle Scholar
  265. Zhu G, Fan Z, Ding M, Zhang H, Mu L, Ding Y, Zhang Y, Jia B, Chen L, Chang Z, Wu W (2015) An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene 34(49):5971–5982.  https://doi.org/10.1038/onc.2015.45CrossRefPubMedGoogle Scholar
  266. Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136(6):1110–1121.  https://doi.org/10.1016/j.cell.2009.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  267. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35.  https://doi.org/10.1038/nrm3025CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesc Tebar
    • 1
  • Carlos Enrich
    • 1
  • Carles Rentero
    • 1
  • Thomas Grewal
    • 2
  1. 1.Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la SalutCentre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de BarcelonaBarcelonaSpain
  2. 2.School of Pharmacy, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia

Personalised recommendations