Advertisement

Hematopathology

  • Sergio Pina-Oviedo
  • Haitham A. Khogeer
  • Guilin Tang
  • Roberto N. MirandaEmail author
Chapter
  • 611 Downloads

Abstract

This chapter covers the most updated classification of neoplastic lymphoid disorders that affect primarily the lymph nodes and also covers the most updated classification of neoplastic disorders that affect primarily the bone marrow and follows the revised classification of the World Health Organization (WHO) published as a summary in 2016 and as a fascicle in 2017.

Keywords

Hematopathology Neoplastic lymphoid disorders Lymph nodes Bone marrow neoplasia Spleen pathology 

References

  1. 1.
    Dunphy CH. Frozen section library: lymph nodes. New York: Springer; 2012.Google Scholar
  2. 2.
    Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 2006;34:409–24.PubMedGoogle Scholar
  3. 3.
    Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.PubMedGoogle Scholar
  4. 4.
    Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15:350–61.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mionnet C, Sanos SL, Mondor I, et al. High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood. 2011;118:6115–22.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8:22–33.PubMedGoogle Scholar
  7. 7.
    Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8:935–47.PubMedGoogle Scholar
  8. 8.
    Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–85.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ioachim HL, Medeiros LJ. Ioachim’s lymph node pathology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.Google Scholar
  10. 10.
    Lu J, Chang KL. Practical immunohistochemistry in hematopathology: a review of useful antibodies for diagnosis. Adv Anat Pathol. 2011;18:133–51.PubMedGoogle Scholar
  11. 11.
    Carey JL, McCoy JP, Keren DF. Flow cytometry in clinical diagnosis. 4th ed. Singapore: American Society for Clinical Pathology; 2007.Google Scholar
  12. 12.
    McGowan-Jordan J, Simons A, Schmid M. An international system for human cytogenomic nomenclature (2016). 2016th ed. Basel: Karger; 2016.Google Scholar
  13. 13.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of hematopoietic and lymphoid tissues. Revised 4th ed. IARC: Lyon 2017.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Medeiros LJ, Carr J. Overview of the role of molecular methods in the diagnosis of malignant lymphomas. Arch Pathol Lab Med. 1999;123:1189–207.PubMedGoogle Scholar
  15. 15.
    Hodges E, Krishna MT, Pickard C, Smith JL. Diagnostic role of tests for T cell receptor (TCR) genes. J Clin Pathol. 2003;56:1–11.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15:585–98.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2017;92:946–65.PubMedGoogle Scholar
  18. 18.
    Rozman C, Montserrat E. Chronic lymphocytic leukemia. N Engl J Med. 1995;333:1052–7.PubMedGoogle Scholar
  19. 19.
    Gribben JG. How I treat CLL up front. Blood. 2010;115:187–97.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Gine E, Martinez A, Villamor N, et al. Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia (“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior. Haematologica. 2010;95:1526–33.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Menter T, Trivedi P, Ahmad R, et al. Diagnostic utility of lymphoid enhancer binding factor 1 immunohistochemistry in small B-cell lymphomas. Am J Clin Pathol. 2017;147:292–300.PubMedGoogle Scholar
  22. 22.
    Teixeira Mendes LS, Peters N, Attygalle AD, Wotherspoon A. Cyclin D1 overexpression in proliferation centres of small lymphocytic lymphoma/chronic lymphocytic leukaemia. J Clin Pathol. 2017;70:899–902.PubMedGoogle Scholar
  23. 23.
    Kohnke T, Wittmann VK, Bucklein VL, et al. Diagnosis of CLL revisited: increased specificity by a modified five-marker scoring system including CD200. Br J Haematol. 2017;179:480–7.PubMedGoogle Scholar
  24. 24.
    Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.PubMedGoogle Scholar
  25. 25.
    Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100:1177–84.PubMedGoogle Scholar
  26. 26.
    Gonzalez-Gascon YMI, Hernandez-Sanchez M, Rodriguez-Vicente AE, et al. Characterizing patients with multiple chromosomal aberrations detected by FISH in chronic lymphocytic leukemia. Leuk Lymphoma. 2018;59:633–42.Google Scholar
  27. 27.
    Crombie J, Davids MS. IGHV mutational status testing in chronic lymphocytic leukemia. Am J Hematol. 2017;92:1393–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Sutton LA, Hadzidimitriou A, Baliakas P, et al. Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica. 2017;102:968–71.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Guieze R, Wu CJ. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia. Blood. 2015;126:445–53.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Onaindia A, Medeiros LJ, Patel KP. Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol. 2017;30:1338–66.PubMedGoogle Scholar
  31. 31.
    D’Agaro T, Bittolo T, Bravin V, et al. NOTCH1 mutational status in chronic lymphocytic leukaemia: clinical relevance of subclonal mutations and mutation types. Br J Haematol. 2018;182:597–602.PubMedGoogle Scholar
  32. 32.
    Lortholary P, Boiron M, Ripault P, Levy JP, Manus A, Bernard J. Chronic lymphoid leukemia secondarily associated with a malignant reticulopathy: Richter’s syndrome. Nouv Rev Fr Hematol. 1964;4:621–44.PubMedGoogle Scholar
  33. 33.
    Richter MN. Generalized reticular cell sarcoma of lymph nodes associated with lymphatic leukemia. Am J Pathol. 1928;4:285–92 7.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Eyre TA, Schuh A. An update for Richter syndrome – new directions and developments. Br J Haematol. 2017;178:508–20.PubMedGoogle Scholar
  35. 35.
    Chigrinova E, Rinaldi A, Kwee I, et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood. 2013;122:2673–82.PubMedGoogle Scholar
  36. 36.
    Mao Z, Quintanilla-Martinez L, Raffeld M, et al. IgVH mutational status and clonality analysis of Richter’s transformation: diffuse large B-cell lymphoma and Hodgkin lymphoma in association with B-cell chronic lymphocytic leukemia (B-CLL) represent 2 different pathways of disease evolution. Am J Surg Pathol. 2007;31:1605–14.PubMedGoogle Scholar
  37. 37.
    Salem A, Loghavi S, Khoury JD, Agbay RL, Jorgensen JL, Medeiros LJ. Herpes simplex infection simulating Richter transformation: a series of four cases and review of the literature. Histopathology. 2017;70:821–31.PubMedGoogle Scholar
  38. 38.
    Agbay RL, Jain N, Loghavi S, Medeiros LJ, Khoury JD. Histologic transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Hematol. 2016;91:1036–43.PubMedGoogle Scholar
  39. 39.
    Parikh SA, Shanafelt TD. Risk factors for Richter syndrome in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2014;9:294–9.PubMedGoogle Scholar
  40. 40.
    Fangazio M, De Paoli L, Rossi D, Gaidano G. Predictive markers and driving factors behind Richter syndrome development. Expert Rev Anticancer Ther. 2011;11:433–42.PubMedGoogle Scholar
  41. 41.
    Fabbri G, Khiabanian H, Holmes AB, et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med. 2013;210:2273–88.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Boucher A-S, Salaun V, Truquet F, et al. Incidence of atypical chronic lymphocytic leukemia in 1819 patients with B chronic lymphoproliferative disorder. Blood. 2013;122:1770.Google Scholar
  43. 43.
    Herishanu Y, Kay S, Joffe E, et al. Integration of automated morphological features resolves a distinct group of atypical chronic lymphocytic leukemias with chromosomal aberrations. Leuk Res. 2014;38:484–9.PubMedGoogle Scholar
  44. 44.
    Strati P, Shanafelt TD. Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification. Blood. 2015;126:454–62.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gibson SE, Swerdlow SH, Ferry JA, et al. Reassessment of small lymphocytic lymphoma in the era of monoclonal B-cell lymphocytosis. Haematologica. 2011;96:1144–52.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Collignon A, Wanquet A, Maitre E, Cornet E, Troussard X, Aurran-Schleinitz T. Prolymphocytic leukemia: new insights in diagnosis and in treatment. Curr Oncol Rep. 2017;19:29.PubMedGoogle Scholar
  47. 47.
    Brill NE, Baehr G, Rosenthal N. Generalized giant lymph follicle hyperplasia of lymph nodes and spleen. A hitherto undescribed type. JAMA. 1925;84:668–71.Google Scholar
  48. 48.
    Symmers D. Follicular lymphadenopathy with splenomegaly: a newly recognized disease of the lymphatic system. Arch Pathol. 1927;3:816–20.Google Scholar
  49. 49.
    Jaffe ES, Shevach EM, Frank MM, Berard CW, Green I. Nodular lymphoma--evidence for origin from follicular B lymphocytes. N Engl J Med. 1974;290:813–9.PubMedGoogle Scholar
  50. 50.
    Freedman A. Follicular lymphoma: 2015 update on diagnosis and management. Am J Hematol. 2015;90:1171–8.PubMedGoogle Scholar
  51. 51.
    Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104:1258–65.PubMedGoogle Scholar
  52. 52.
    Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The Follicular Lymphoma International Prognostic Index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108:1504–8.PubMedGoogle Scholar
  53. 53.
    Mann RB, Berard CW. Criteria for the cytologic subclassification of follicular lymphomas: a proposed alternative method. Hematol Oncol. 1983;1:187–92.PubMedGoogle Scholar
  54. 54.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.Google Scholar
  55. 55.
    Eshoa C, Perkins S, Kampalath B, Shidham V, Juckett M, Chang CC. Decreased CD10 expression in grade III and in interfollicular infiltrates of follicular lymphomas. Am J Clin Pathol. 2001;115:862–7.PubMedGoogle Scholar
  56. 56.
    Schraders M, de Jong D, Kluin P, Groenen P, van Krieken H. Lack of Bcl-2 expression in follicular lymphoma may be caused by mutations in the BCL2 gene or by absence of the t(14;18) translocation. J Pathol. 2005;205:329–35.PubMedGoogle Scholar
  57. 57.
    Masir N, Campbell LJ, Goff LK, et al. BCL2 protein expression in follicular lymphomas with t(14;18) chromosomal translocations. Br J Haematol. 2009;144:716–25.PubMedGoogle Scholar
  58. 58.
    Rack KA, Salomon-Nguyen F, Radford-Weiss I, et al. FISH detection of chromosome 14q32/IgH translocations: evaluation in follicular lymphoma. Br J Haematol. 1998;103:495–504.PubMedGoogle Scholar
  59. 59.
    Bosga-Bouwer AG, van Imhoff GW, Boonstra R, et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood. 2003;101:1149–54.PubMedGoogle Scholar
  60. 60.
    Gu K, Chan WC, Hawley RC. Practical detection of t(14;18)(IgH/BCL2) in follicular lymphoma. Arch Pathol Lab Med. 2008;132:1355–61.PubMedGoogle Scholar
  61. 61.
    Gu K, Fu K, Jain S, et al. t(14;18)-negative follicular lymphomas are associated with a high frequency of BCL6 rearrangement at the alternative breakpoint region. Mod Pathol. 2009;22:1251–7.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Viardot A, Moller P, Hogel J, et al. Clinicopathologic correlations of genomic gains and losses in follicular lymphoma. J Clin Oncol. 2002;20:4523–30.PubMedGoogle Scholar
  63. 63.
    Bodor C, Grossmann V, Popov N, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122:3165–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Siddiqi IN, Friedman J, Barry-Holson KQ, et al. Characterization of a variant of t(14;18) negative nodal diffuse follicular lymphoma with CD23 expression, 1p36/TNFRSF14 abnormalities, and STAT6 mutations. Mod Pathol. 2016;29:570–81.PubMedGoogle Scholar
  65. 65.
    Cong P, Raffeld M, Teruya-Feldstein J, Sorbara L, Pittaluga S, Jaffe ES. In situ localization of follicular lymphoma: description and analysis by laser capture microdissection. Blood. 2002;99:3376–82.PubMedGoogle Scholar
  66. 66.
    Roulland S, Navarro JM, Grenot P, et al. Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med. 2006;203:2425–31.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Jegalian AG, Eberle FC, Pack SD, et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood. 2011;118:2976–84.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Schmatz AI, Streubel B, Kretschmer-Chott E, et al. Primary follicular lymphoma of the duodenum is a distinct mucosal/submucosal variant of follicular lymphoma: a retrospective study of 63 cases. J Clin Oncol. 2011;29:1445–51.PubMedGoogle Scholar
  69. 69.
    Sentani K, Maeshima AM, Nomoto J, et al. Follicular lymphoma of the duodenum: a clinicopathologic analysis of 26 cases. Jpn J Clin Oncol. 2008;38:547–52.PubMedGoogle Scholar
  70. 70.
    Takata K, Okada H, Ohmiya N, et al. Primary gastrointestinal follicular lymphoma involving the duodenal second portion is a distinct entity: a multicenter, retrospective analysis in Japan. Cancer Sci. 2011;102:1532–6.PubMedGoogle Scholar
  71. 71.
    Takata K, Sato Y, Nakamura N, et al. Duodenal and nodal follicular lymphomas are distinct: the former lacks activation-induced cytidine deaminase and follicular dendritic cells despite ongoing somatic hypermutations. Mod Pathol. 2009;22:940–9.PubMedGoogle Scholar
  72. 72.
    Bende RJ, Smit LA, Bossenbroek JG, et al. Primary follicular lymphoma of the small intestine: alpha4beta7 expression and immunoglobulin configuration suggest an origin from local antigen-experienced B cells. Am J Pathol. 2003;162:105–13.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Takata K, Tanino M, Ennishi D, et al. Duodenal follicular lymphoma: comprehensive gene expression analysis with insights into pathogenesis. Cancer Sci. 2014;105:608–15.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Louissaint A Jr, Ackerman AM, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120:2395–404.PubMedGoogle Scholar
  75. 75.
    Quintanilla-Martinez L, Sander B, Chan JK, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468:141–57.PubMedGoogle Scholar
  76. 76.
    Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37:333–43.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Lones MA, Raphael M, McCarthy K, et al. Primary follicular lymphoma of the testis in children and adolescents. J Pediatr Hematol Oncol. 2012;34:68–71.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Schmidt J, Ramis-Zaldivar JE, Nadeu F, et al. Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood. 2017;130:323–7.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Louissaint A Jr, Schafernak KT, Geyer JT, et al. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood. 2016;128:1093–100.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Schmidt J, Gong S, Marafioti T, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128:1101–11.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ozawa MG, Bhaduri A, Chisholm KM, et al. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Mod Pathol. 2016;29:1212–20.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Fedoriw Y, Dogan A. The expanding spectrum of follicular lymphoma. Surg Pathol Clin. 2016;9:29–40.PubMedGoogle Scholar
  83. 83.
    Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113:1053–61.PubMedGoogle Scholar
  84. 84.
    Vose JM. Mantle cell lymphoma: 2017 update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2017;92:806–13.PubMedGoogle Scholar
  85. 85.
    Dreyling M. Mantle cell lymphoma: biology, clinical presentation, and therapeutic approaches. Am Soc Clin Oncol Educ Book. 2014:191–8.Google Scholar
  86. 86.
    Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–62.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Soldini D, Valera A, Sole C, et al. Assessment of SOX11 expression in routine lymphoma tissue sections: characterization of new monoclonal antibodies for diagnosis of mantle cell lymphoma. Am J Surg Pathol. 2014;38:86–93.PubMedGoogle Scholar
  88. 88.
    Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106:4315–21.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Determann O, Hoster E, Ott G, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood. 2008;111:2385–7.PubMedGoogle Scholar
  90. 90.
    Dreyling M, Ferrero S, Vogt N, Klapper W. New paradigms in mantle cell lymphoma: is it time to risk-stratify treatment based on the proliferative signature? Clin Cancer Res. 2014;20:5194–206.PubMedGoogle Scholar
  91. 91.
    Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110:18250–5.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Orchard J, Garand R, Davis Z, et al. A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood. 2003;101:4975–81.PubMedGoogle Scholar
  93. 93.
    Espinet B, Salaverria I, Bea S, et al. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer. 2010;49:439–51.PubMedGoogle Scholar
  94. 94.
    Fernandez V, Salamero O, Espinet B, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70:1408–18.PubMedGoogle Scholar
  95. 95.
    Adam P, Schiefer AI, Prill S, et al. Incidence of preclinical manifestations of mantle cell lymphoma and mantle cell lymphoma in situ in reactive lymphoid tissues. Mod Pathol. 2012;25:1629–36.PubMedGoogle Scholar
  96. 96.
    Raderer M, Kiesewetter B, Ferreri AJ. Clinicopathologic characteristics and treatment of marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). CA Cancer J Clin. 2016;66:153–71.PubMedGoogle Scholar
  97. 97.
    Thieblemont C, Cascione L, Conconi A, et al. A MALT lymphoma prognostic index. Blood. 2017;130:1409–17.PubMedGoogle Scholar
  98. 98.
    Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer. 1983;52:1410–6.PubMedGoogle Scholar
  99. 99.
    Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338:1175–6.PubMedGoogle Scholar
  100. 100.
    Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood. 2016;127:2082–92.PubMedGoogle Scholar
  101. 101.
    Isaacson PG. Mucosa-associated lymphoid tissue lymphoma. Semin Hematol. 1999;36:139–47.PubMedGoogle Scholar
  102. 102.
    Fairweather PM, Williamson R, Tsikleas G. Pulmonary extranodal marginal zone lymphoma with massive crystal storing histiocytosis. Am J Surg Pathol. 2006;30:262–7.PubMedGoogle Scholar
  103. 103.
    Mittal R, Damato B, Coupland SE. Conjunctival extranodal marginal zone B-cell lymphoma with crystal-storing histiocytosis. Acta Ophthalmol. 2015;93:e602–3.PubMedGoogle Scholar
  104. 104.
    Jaso J, Chen L, Li S, et al. CD5-positive mucosa-associated lymphoid tissue (MALT) lymphoma: a clinicopathologic study of 14 cases. Hum Pathol. 2012;43:1436–43.PubMedGoogle Scholar
  105. 105.
    Johrens K, Shimizu Y, Anagnostopoulos I, et al. T-bet-positive and IRTA1-positive monocytoid B cells differ from marginal zone B cells and epithelial-associated B cells in their antigen profile and topographical distribution. Haematologica. 2005;90:1070–7.PubMedGoogle Scholar
  106. 106.
    Kanellis G, Roncador G, Arribas A, et al. Identification of MNDA as a new marker for nodal marginal zone lymphoma. Leukemia. 2009;23:1847–57.PubMedGoogle Scholar
  107. 107.
    Troppan K, Wenzl K, Neumeister P, Deutsch A. Molecular pathogenesis of MALT lymphoma. Gastroenterol Res Pract. 2015;2015:102656.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Inagaki H. Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinicopathological significance. Pathol Int. 2007;57:474–84.PubMedGoogle Scholar
  109. 109.
    Isaacson PG. Update on MALT lymphomas. Best Pract Res Clin Haematol. 2005;18:57–68.PubMedGoogle Scholar
  110. 110.
    Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer. 2004;4:644–53.PubMedGoogle Scholar
  111. 111.
    Chng WJ, Remstein ED, Fonseca R, et al. Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications. Blood. 2009;113:635–45.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Arcaini L, Lucioni M, Boveri E, Paulli M. Nodal marginal zone lymphoma: current knowledge and future directions of an heterogeneous disease. Eur J Haematol. 2009;83:165–74.PubMedGoogle Scholar
  113. 113.
    Viswanatha DS, Dogan A. Hepatitis C virus and lymphoma. J Clin Pathol. 2007;60:1378–83.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Arcaini L, Paulli M, Boveri E, et al. Splenic and nodal marginal zone lymphomas are indolent disorders at high hepatitis C virus seroprevalence with distinct presenting features but similar morphologic and phenotypic profiles. Cancer. 2004;100:107–15.PubMedGoogle Scholar
  115. 115.
    de Sanjose S, Benavente Y, Vajdic CM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol. 2008;6:451–8.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Campo E, Miquel R, Krenacs L, Sorbara L, Raffeld M, Jaffe ES. Primary nodal marginal zone lymphomas of splenic and MALT type. Am J Surg Pathol. 1999;23:59–68.PubMedGoogle Scholar
  117. 117.
    Pileri S, Ponzoni M. Pathology of nodal marginal zone lymphomas. Best Pract Res Clin Haematol. 2017;30:50–5.PubMedGoogle Scholar
  118. 118.
    Koo M, Ohgami RS. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma: recent clinical, morphologic, immunophenotypic, and genetic insights. Adv Anat Pathol. 2017;24:128–35.PubMedGoogle Scholar
  119. 119.
    Gertz MA. Waldenstrom macroglobulinemia: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92:209–17.PubMedGoogle Scholar
  120. 120.
    Kasi PM, Ansell SM, Gertz MA. Waldenstrom macroglobulinemia. Clin Adv Hematol Oncol. 2015;13:56–66.PubMedGoogle Scholar
  121. 121.
    Swerdlow SH, Cook JR, Sohani AR, et al. Lymphoplasmacytic lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 232–5.Google Scholar
  122. 122.
    Medeiros LJ, Lin P, Miranda RN. Lymphoplasmacytic lymphoma and Waldenstrom macroglobulinemia. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 330–9.Google Scholar
  123. 123.
    Medeiros LJ, O’Malley DP, Caraway NP, Vega F, Elenitoba-Johnson KSJ, Lim MS. Tumors of the lymph nodes and spleen. 4th Series ed. Washington, DC: American Registry of Pathology; 2017.Google Scholar
  124. 124.
    Castillo JJ, D’Sa S, Lunn MP, et al. Central nervous system involvement by Waldenstrom macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study. Br J Haematol. 2016;172:709–15.PubMedGoogle Scholar
  125. 125.
    Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Am J Clin Pathol. 2005;124:414–20.PubMedGoogle Scholar
  126. 126.
    Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367:826–33.PubMedGoogle Scholar
  127. 127.
    Gachard N, Parrens M, Soubeyran I, et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia. 2013;27:183–9.PubMedGoogle Scholar
  128. 128.
    Hamadeh F, MacNamara SP, Aguilera NS, Swerdlow SH, Cook JR. MYD88 L265P mutation analysis helps define nodal lymphoplasmacytic lymphoma. Mod Pathol. 2015;28:564–74.PubMedGoogle Scholar
  129. 129.
    Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121:2522–8.PubMedGoogle Scholar
  130. 130.
    Poulain S, Roumier C, Venet-Caillault A, et al. Genomic landscape of CXCR4 mutations in Waldenstrom Macroglobulinemia. Clin Cancer Res. 2016;22:1480–8.PubMedGoogle Scholar
  131. 131.
    Ballester LY, Loghavi S, Kanagal-Shamanna R, et al. Clinical validation of a CXCR4 mutation screening assay for Waldenstrom Macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2016;16:395–403 e1.PubMedGoogle Scholar
  132. 132.
    Schmidt J, Federmann B, Schindler N, et al. MYD88 L265P and CXCR4 mutations in lymphoplasmacytic lymphoma identify cases with high disease activity. Br J Haematol. 2015;169:795–803.PubMedGoogle Scholar
  133. 133.
    Swerdlow SH, Kuzu I, Dogan A, et al. The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Archiv. 2016;468:259–75.PubMedGoogle Scholar
  134. 134.
    Harmon CM, Smith LB. B-cell non-Hodgkin lymphomas with plasmacytic differentiation. Surg Pathol Clin. 2016;9:11–28.PubMedGoogle Scholar
  135. 135.
    Thumallapally N, Meshref A, Mousa M, Terjanian T. Solitary plasmacytoma: population-based analysis of survival trends and effect of various treatment modalities in the USA. BMC Cancer. 2017;17:13.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Barzenje DA, Kolstad A, Ghanima W, Holte H. Long-term outcome of patients with solitary plasmacytoma treated with radiotherapy: a population-based, single-center study with median follow-up of 13.7 years. Hematol Oncol. 2018;36:217–23.PubMedGoogle Scholar
  137. 137.
    Morinaga S, Watanabe H, Gemma A, et al. Plasmacytoma of the lung associated with nodular deposits of immunoglobulin. Am J Surg Pathol. 1987;11:989–95.PubMedGoogle Scholar
  138. 138.
    Dayton VD, Williams SJ, McKenna RW, Linden MA. Unusual extramedullary hematopoietic neoplasms in lymph nodes. Hum Pathol. 2017;62:13–22.PubMedGoogle Scholar
  139. 139.
    Kojima M, Motoori T, Tamaki Y, et al. Cyclin D1 protein overexpression in extramedullary plasmacytoma: a clinicopathologic study of 11 cases. J Clin Exp Hematop: JCEH. 2009;49:53–6.PubMedGoogle Scholar
  140. 140.
    Salarieh A, Rao C, Gottesman SR, Alagha O, Todor R, Axiotis CA. Plasma cell tumors in HIV-positive patients: report of a case and review of the literature. Leuk Lymphoma. 2005;46:1067–74.PubMedGoogle Scholar
  141. 141.
    Bink K, Haralambieva E, Kremer M, et al. Primary extramedullary plasmacytoma: similarities with and differences from multiple myeloma revealed by interphase cytogenetics. Haematologica. 2008;93:623–6.PubMedGoogle Scholar
  142. 142.
    Vasef MA, Medeiros LJ, Yospur LS, Sun NC, McCourty A, Brynes RK. Cyclin D1 protein in multiple myeloma and plasmacytoma: an immunohistochemical study using fixed, paraffin-embedded tissue sections. Mod Pathol. 1997;10:927–32.PubMedGoogle Scholar
  143. 143.
    Gascoyne RD, Campo E, Jaffe ES, et al. Diffuse large B-cell lymphoma, not otherwise specified. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 291–7.Google Scholar
  144. 144.
    Medeiros LJ, F FV, Miranda RN. Diffuse large B-cell lymphoma, not otherwise specified. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and Extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 370–7.Google Scholar
  145. 145.
    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.PubMedGoogle Scholar
  146. 146.
    Visco C, Li Y, Xu-Monette ZY, et al. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Leukemia. 2012;26:2103–13.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Lin P, Medeiros LJ. High-grade B-cell lymphoma/leukemia associated with t(14;18) and 8q24/MYC rearrangement: a neoplasm of germinal center immunophenotype with poor prognosis. Haematologica. 2007;92:1297–301.PubMedGoogle Scholar
  148. 148.
    Miranda RN, Medeiros LJ. High grade B-cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 416–21.Google Scholar
  149. 149.
    Miranda RN, Bueso-Ramos CE, Medeiros LJ. Burkitt lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 408–15.Google Scholar
  150. 150.
    Magrath IT. African Burkitt’s lymphoma. History, biology, clinical features, and treatment. Am J Pediatr Hematol Oncol. 1991;13:222–46.PubMedGoogle Scholar
  151. 151.
    Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3:182–7.PubMedGoogle Scholar
  152. 152.
    Leoncini L, Campo E, Stein H, Harris NL, Jaffe ES, Kluin PM. Burkitt-like lymphoma with 11q aberration. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 334.Google Scholar
  153. 153.
    Bueso-Ramos CE. Burkitt Lymphoma. In: Medeiros LJ, editor. Diagnostic pathology: lymph nodes and spleen with extranodal lymphomas. Altona, Manitoba: Amirsys, Inc; 2011:6–84 to 6–91.Google Scholar
  154. 154.
    Bellan C, Stefano L, Giulia de F, Rogena EA, Lorenzo L. Burkitt lymphoma versus diffuse large B-cell lymphoma: a practical approach. Hematol Oncol. 2009;27:182–5.PubMedGoogle Scholar
  155. 155.
    Ioachim HL, Dorsett B, Cronin W, Maya M, Wahl S. Acquired immunodeficiency syndrome-associated lymphomas: clinical, pathologic, immunologic, and viral characteristics of 111 cases. Hum Pathol. 1991;22:659–73.PubMedGoogle Scholar
  156. 156.
    Dictor M, Ek S, Sundberg M, et al. Strong lymphoid nuclear expression of SOX11 transcription factor defines lymphoblastic neoplasms, mantle cell lymphoma and Burkitt’s lymphoma. Haematologica. 2009;94:1563–8.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Chuang SS, Huang WT, Hsieh PP, et al. Sporadic paediatric and adult Burkitt lymphomas share similar phenotypic and genotypic features. Histopathology. 2008;52:427–35.PubMedGoogle Scholar
  158. 158.
    Kelemen K, Braziel RM, Gatter K, Bakke TC, Olson S, Fan G. Immunophenotypic variations of Burkitt lymphoma. Am J Clin Pathol. 2010;134:127–38.PubMedGoogle Scholar
  159. 159.
    Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000;18:3707–21.PubMedGoogle Scholar
  160. 160.
    Klapproth K, Wirth T. Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol. 2010;149:484–97.PubMedGoogle Scholar
  161. 161.
    Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354:2419–30.PubMedGoogle Scholar
  162. 162.
    Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354:2431–42.PubMedGoogle Scholar
  163. 163.
    Bueso-Ramos CE. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. In: Medeiros LJ, editor. Diagnostic pathology: lymph nodes and spleen with extranodal lymphomas. Altona: Amirsys, Inc; 2011:8–2 to 8–7.Google Scholar
  164. 164.
    Kluin PM, Harris NL, Stein H, et al. High-grade B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 335–41.Google Scholar
  165. 165.
    Perkins AS, Friedberg JW. Burkitt lymphoma in adults. Hematology Am Soc Hematol Educ Program. 2008:341–8.Google Scholar
  166. 166.
    Jaffe ES, Stein H, Swerdlow SH, Campo E, Pileri SA, Harris NL. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: IARC; 2017. p. 342–4.Google Scholar
  167. 167.
    Vega F. B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma. In: Medeiros LJ, editor. Diagnostic pathology: lymph nodes and spleen with extranodal lymphomas. 1st ed. Altona, Manitoba: Amirsys Inc; 2011. p. 8–17.Google Scholar
  168. 168.
    Medeiros LJ, Vega F, Miranda RN. B-cell lymphoma, unclassifiable, intermediate between diffuse large B-cell lymphoma and classic Hodgkin lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 422–31.Google Scholar
  169. 169.
    Garcia JF, Mollejo M, Fraga M, et al. Large B-cell lymphoma with Hodgkin’s features. Histopathology. 2005;47:101–10.PubMedGoogle Scholar
  170. 170.
    Gualco G, Natkunam Y, Bacchi CE. The spectrum of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma: a description of 10 cases. Mod Pathol. 2012;25:661–74.PubMedGoogle Scholar
  171. 171.
    Zarate-Osorno A, Medeiros LJ, Longo DL, Jaffe ES. Non-Hodgkin’s lymphomas arising in patients successfully treated for Hodgkin’s disease. A clinical, histologic, and immunophenotypic study of 14 cases. Am J Surg Pathol. 1992;16:885–95.PubMedGoogle Scholar
  172. 172.
    Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851–62.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Eberle FC, Rodriguez-Canales J, Wei L, et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical Hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica. 2011;96:558–66.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24:1586–97.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Feuerhake F, Kutok JL, Monti S, et al. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood. 2005;106:1392–9.PubMedGoogle Scholar
  176. 176.
    Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368:1408–16.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Dunleavy K, Grant C, Eberle FC, Pittaluga S, Jaffe ES, Wilson WH. Gray zone lymphoma: better treated like Hodgkin lymphoma or mediastinal large B-cell lymphoma? Curr Hematol Malig Rep. 2012;7:241–7.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Wilson WH, Pittaluga S, Nicolae A, et al. A prospective study of mediastinal gray-zone lymphoma. Blood. 2014;124:1563–9.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Gaulard P, Harris NL, Pileri SA, et al. Primary mediastinal (thymic) large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of the haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 314–6.Google Scholar
  180. 180.
    Medeiros LJ, F FV, Miranda RN. Primary mediastinal (thymic) large B-cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 466–75.Google Scholar
  181. 181.
    Cazals-Hatem D, Lepage E, Brice P, et al. Primary mediastinal large B-cell lymphoma. A clinicopathologic study of 141 cases compared with 916 nonmediastinal large B-cell lymphomas, a GELA (“Groupe d’Etude des Lymphomes de’ Adulte”) study. Am J Surg Pathol. 1996;20:877–88.PubMedGoogle Scholar
  182. 182.
    Paulli M, Strater J, Gianelli U, et al. Mediastinal B-cell lymphoma: a study of its histomorphologic spectrum based on 109 cases. Hum Pathol. 1999;30:178–87.PubMedGoogle Scholar
  183. 183.
    Pileri SA, Gaidano G, Zinzani PL, et al. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am J Pathol. 2003;162:243–53.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Rodig SJ, Savage KJ, LaCasce AS, et al. Expression of TRAF1 and nuclear c-Rel distinguishes primary mediastinal large cell lymphoma from other types of diffuse large B-cell lymphoma. Am J Surg Pathol. 2007;31:106–12.PubMedGoogle Scholar
  185. 185.
    Copie-Bergman C, Plonquet A, Alonso MA, et al. MAL expression in lymphoid cells: further evidence for MAL as a distinct molecular marker of primary mediastinal large B-cell lymphomas. Mod Pathol. 2002;15:1172–80.PubMedGoogle Scholar
  186. 186.
    Scarpa A, Moore PS, Rigaud G, et al. Molecular features of primary mediastinal B-cell lymphoma: involvement of p16INK4A, p53 and c-myc. Br J Haematol. 1999;107:106–13.PubMedGoogle Scholar
  187. 187.
    Bentz M, Werner CA, Dohner H, et al. High incidence of chromosomal imbalances and gene amplifications in the classical follicular variant of follicle center lymphoma. Blood. 1996;88:1437–44.PubMedGoogle Scholar
  188. 188.
    Wessendorf S, Barth TF, Viardot A, et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia. 2007;21:2463–9.PubMedGoogle Scholar
  189. 189.
    Melzner I, Bucur AJ, Bruderlein S, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105:2535–42.PubMedGoogle Scholar
  190. 190.
    Hill BT, Sweetenham J. Clinical implications of the molecular subtypes of diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53:763–9.PubMedGoogle Scholar
  191. 191.
    De Wolf-Peeters C, Delabie J, Campo E, et al. T cell/histiocyte-rich large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 238–9.Google Scholar
  192. 192.
    Vega F. T-cell/histiocyte-rich large B-cell lymphoma. In: Medeiros LJ, editor. Diagnostic pathology lymph nodes and spleen with extranodal lymphomas. Altona, Manitoba: Amirsys, Inc; 2011:6–62 to 6–5.Google Scholar
  193. 193.
    Ott G, Delabie J, Gascoyne RD, Campo E, Stein H, Jaffe ES. T-cell/histiocyte-rich large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 298–9.Google Scholar
  194. 194.
    Tousseyn T, De Wolf-Peeters C. T cell/histiocyte-rich large B-cell lymphoma: an update on its biology and classification. Virchows Archiv. 2011;459:557–63.PubMedGoogle Scholar
  195. 195.
    Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113:2765–3775.PubMedGoogle Scholar
  196. 196.
    Van Loo P, Tousseyn T, Vanhentenrijk V, et al. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response. Haematologica. 95:440–8.Google Scholar
  197. 197.
    Boudova L, Torlakovic E, Delabie J, et al. Nodular lymphocyte-predominant Hodgkin lymphoma with nodules resembling T-cell/histiocyte-rich B-cell lymphoma: differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma. Blood. 2003;102:3753–8.PubMedGoogle Scholar
  198. 198.
    Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161:1861–7.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Hartmann S, Eichenauer DA, Plutschow A, et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood. 2013;122:4246–52; quiz 92.PubMedGoogle Scholar
  200. 200.
    Delsol G, Campo, E., Gascoyne, R.D. ALK-positive large B-cell lymphoma. In: Swerdlow SH, Campo E, Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. WHO classification of tumours of the haematopoietic and lymphoid tissues. Lyon: IARC; 2008:254–255.Google Scholar
  201. 201.
    Muzzafar T. ALK+ diffuse large B-cell lymphoma. In: Medeiros LJ, editor. Diagnostic pathology: lymph nodes and spleen with extranodal lymphomas. 1st ed. Altona, Manitoba: Amirsys Inc; 2011:6–66 to 6–71.Google Scholar
  202. 202.
    Delsol G, Lamant L, Mariame B, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood. 1997;89:1483–90.PubMedGoogle Scholar
  203. 203.
    Reichard KK, McKenna RW, Kroft SH. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. Mod Pathol. 2007;20:310–9.PubMedGoogle Scholar
  204. 204.
    Van Roosbroeck K, Cools J, Dierickx D, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95:509–13.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Beltran B, Castillo J, Salas R, et al. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. J Hematol Oncol. 2009;2:11.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125:2323–30.PubMedGoogle Scholar
  207. 207.
    Campo E, Stein H, Harris NL. Plasmablastic lymphoma. In: Swerdlow SH, Campo E, Harris NH, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th. Lyon: Elsevier; 2017:321–322.Google Scholar
  208. 208.
    Medeiros LJ, Vega F, Miranda RN. Plasmablastic lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 500–9.Google Scholar
  209. 209.
    Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.PubMedGoogle Scholar
  210. 210.
    Dong HY, Scadden DT, de Leval L, Tang Z, Isaacson PG, Harris NL. Plasmablastic lymphoma in HIV-positive patients: an aggressive Epstein-Barr virus-associated extramedullary plasmacytic neoplasm. Am J Surg Pathol. 2005;29:1633–41.PubMedGoogle Scholar
  211. 211.
    Colomo L, Loong F, Rives S, et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol. 2004;28:736–47.PubMedGoogle Scholar
  212. 212.
    Teruya-Feldstein J, Chiao E, Filippa DA, et al. CD20-negative large-cell lymphoma with plasmablastic features: a clinically heterogenous spectrum in both HIV-positive and -negative patients. Ann Oncol. 2004;15:1673–9.PubMedGoogle Scholar
  213. 213.
    Liu JJ, Zhang L, Ayala E, et al. Human immunodeficiency virus (HIV)-negative plasmablastic lymphoma: a single institutional experience and literature review. Leuk Res. 2011;35:1571–7.PubMedGoogle Scholar
  214. 214.
    Vega F, Chang CC, Medeiros LJ, et al. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18:806–15.PubMedGoogle Scholar
  215. 215.
    Gaidano G, Cerri M, Capello D, et al. Molecular histogenesis of plasmablastic lymphoma of the oral cavity. Br J Haematol. 2002;119:622–8.PubMedGoogle Scholar
  216. 216.
    Montes-Moreno S, Montalban C, Piris MA. Large B-cell lymphomas with plasmablastic differentiation: a biological and therapeutic challenge. Leuk Lymphoma. 2011.Google Scholar
  217. 217.
    Lorsbach RB, Hsi ED, Dogan A, Fend F. Plasma cell myeloma and related neoplasms. Am J Clin Pathol. 2011;136:168–82.PubMedGoogle Scholar
  218. 218.
    Slack GW, Gascoyne RD. MYC and aggressive B-cell lymphomas. Adv Anat Pathol. 2011;18:219–28.PubMedGoogle Scholar
  219. 219.
    Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34:1686–94.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Bogusz AM, Seegmiller AC, Garcia R, Shang P, Ashfaq R, Chen W. Plasmablastic lymphomas with MYC/IgH rearrangement: report of three cases and review of the literature. Am J Clin Pathol. 2009;132:597–605.PubMedGoogle Scholar
  221. 221.
    Castillo JJ. Plasmablastic lymphoma: are more intensive regimens needed? Leuk Res. 2011;35:1547–8.PubMedGoogle Scholar
  222. 222.
    Nakamura S, Jaffe ES, Swerdlow SH, editors. EBV positive diffuse large B-cell lymphoma, not otherwise specified (NOS). Revised 4th ed. Lyon: IARC; 2017.Google Scholar
  223. 223.
    Oyama T, Ichimura K, Suzuki R, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol. 2003;27:16–26.PubMedGoogle Scholar
  224. 224.
    Oyama T, Yamamoto K, Asano N, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13:5124–32.PubMedGoogle Scholar
  225. 225.
    Park S, Lee J, Ko YH, et al. The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood. 2007;110:972–8.PubMedGoogle Scholar
  226. 226.
    Kuze T, Nakamura N, Hashimoto Y, Sasaki Y, Abe M. The characteristics of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma: comparison between EBV(+) and EBV(−) cases in Japanese population. Jpn J Cancer Res. 2000;91:1233–40.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Beltran BE, Castillo JJ, Salas R, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma of the elderly treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone: report of two cases from South America. Leuk Lymphoma. 2011;52:153–6.PubMedGoogle Scholar
  228. 228.
    Beltran BE, Morales D, Quinones P, Medeiros LJ, Miranda RN, Castillo JJ. EBV-positive diffuse large b-cell lymphoma in young immunocompetent individuals. Clin Lymphoma Myeloma Leuk. 2011;11:512–6.PubMedGoogle Scholar
  229. 229.
    Medeiros LJ, You MJ, Miranda RN. Peripheral T-cell lymphoma, not otherwise specified. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed: Elsevier; 2018. p. 590–9.Google Scholar
  230. 230.
    Moffitt AB, Dave SS. Clinical applications of the genomic landscape of aggressive non-Hodgkin lymphoma. J Clin Oncol. 2017;35:955–62.PubMedGoogle Scholar
  231. 231.
    Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123:2915–23.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Sandell RF, Boddicker RL, Feldman AL. Genetic landscape and classification of peripheral T cell lymphomas. Curr Oncol Rep. 2017;19:28.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Broccoli A, Zinzani PL. Peripheral T-cell lymphoma, not otherwise specified. Blood. 2017;129:1103–12.PubMedGoogle Scholar
  234. 234.
    Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward - report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64:171–99.PubMedGoogle Scholar
  235. 235.
    Dobay MP, Lemonnier F, Missiaglia E, et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica. 2017;102:e148–e51.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Yoo HY, Kim P, Kim WS, et al. Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma. Haematologica. 2016;101:757–63.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Medeiros LJ, Wang SA, Miranda RN. Angioimmunoblastic T-cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2018. p. 600–9.Google Scholar
  238. 238.
    Medeiros LJ, Wang SA, Miranda RN. Enteropathy-associated T-cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2018. p. 662–9.Google Scholar
  239. 239.
    Lemonnier F, Couronne L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120:1466–9.PubMedGoogle Scholar
  240. 240.
    Lunning MA, Vose JM. Angioimmunoblastic T-cell lymphoma: the many-faced lymphoma. Blood. 2017;129:1095–102.PubMedGoogle Scholar
  241. 241.
    Miller TEA, Shelton D, Rana DN, Narine N. Angioimmunoblastic T cell lymphoma mimics reactive lymphoid tissue on cytomorphology: a multimodality approach utilising cytology, immunocytochemistry and flow cytometry to resolve this diagnostic dilemma. Cytopathology. 2017;28:239–41.PubMedGoogle Scholar
  242. 242.
    Attygalle AD, Kyriakou C, Dupuis J, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol. 2007;31:1077–88.PubMedGoogle Scholar
  243. 243.
    Loghavi S, Wang SA, Medeiros LJ, et al. Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology. Leuk Lymphoma. 2016;57:2804–12.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Cheng CL, O’Connor S. T cell-rich lymphoid infiltrates with large B cells: a review of key entities and diagnostic approach. J Clin Pathol. 2017;70:187–201.PubMedGoogle Scholar
  245. 245.
    Ondrejka SL, Grzywacz B, Bodo J, et al. Angioimmunoblastic T-cell lymphomas with the RHOA p.Gly17Val mutation have classic clinical and pathologic features. Am J Surg Pathol. 2016;40:335–41.PubMedGoogle Scholar
  246. 246.
    Fujisawa M, Sakata-Yanagimoto M, Nishizawa S, et al. Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia. 2017;32:694–702.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Medeiros LJ, F FV, Miranda RN. ALK (+) Anaplastic large cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed: Elsevier; 2017. p. 620–5.Google Scholar
  248. 248.
    Medeiros LJ, Vega F, Miranda RN. ALK(−) anaplastic large cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. Salt Lake City: Elsevier; 2018. p. 620–5.Google Scholar
  249. 249.
    Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32:114–20.PubMedGoogle Scholar
  250. 250.
    Miranda RN, Medeiros LJ. Breast implant-associated anaplastic large cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 634–43.Google Scholar
  251. 251.
    Feldman AL, Harris NL, Stein H, Campo E, Kinney MC, Jaffe ES, Falini B, Inghirami GG, Pileri SA. Breast implant-associated anaplastic large cell lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 421–2.Google Scholar
  252. 252.
    Ferrufino-Schmidt MC, Medeiros LJ, Liu H, et al. Clinicopathologic features and prognostic impact of lymph node involvement in patients with breast implant-associated anaplastic large cell lymphoma. Am J Surg Pathol. 2018;42:293–305.PubMedGoogle Scholar
  253. 253.
    Clemens MW, Medeiros LJ, Butler CE, et al. Complete surgical excision is essential for the management of patients with breast implant-associated anaplastic large-cell lymphoma. J Clin Oncol. 2016;34:160–8.PubMedGoogle Scholar
  254. 254.
    De Paepe P, Baens M, van Krieken H, et al. ALK activation by the CLTC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood. 2003;102:2638–41.PubMedGoogle Scholar
  255. 255.
    Ondrejka S, Jagadeesh D. Enteropathy-associated T-cell lymphoma. Curr Hematol Malig Rep. 2016;11:504–13.PubMedGoogle Scholar
  256. 256.
    Malamut G, Chandesris O, Verkarre V, et al. Enteropathy associated T cell lymphoma in celiac disease: a large retrospective study. Dig Liver Dis. 2013;45:377–84.PubMedGoogle Scholar
  257. 257.
    Moffitt AB, Ondrejka SL, McKinney M, et al. Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med. 2017;214:1371–86.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Miranda RN, Medeiros LJ. Monomorphic epitheliotropic intestinal T-cell lymphoma. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd ed: Elsevier; 2017. p. 670–7.Google Scholar
  259. 259.
    Ishibashi H, Nimura S, Kayashima Y, et al. Multiple lesions of gastrointestinal tract invasion by monomorphic epitheliotropic intestinal T-cell lymphoma, accompanied by duodenal and intestinal enteropathy-like lesions and microscopic lymphocytic proctocolitis: a case series. Diagn Pathol. 2016;11:66.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Hong YS, Woo YS, Park G, et al. Endoscopic findings of enteropathy-associated T-cell lymphoma type II: a case series. Gut Liver. 2016;10:147–51.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Chen Y, Tan SY, Petersson BF, Khor YM, Gopalakrishnan SK, Tan D. Occult recurrence of monomorphic epitheliotropic intestinal T-cell lymphoma and the role of MATK gene expression in diagnosis. Hematol Oncol. 2017;35:852–5.PubMedGoogle Scholar
  262. 262.
    Ishibashi H, Nimura S, Ishitsuka K, et al. High expression of intestinal homing receptor CD103 in adult T-cell leukemia/lymphoma, similar to 2 other CD8+ T-cell lymphomas. Am J Surg Pathol. 2016;40:462–70.PubMedGoogle Scholar
  263. 263.
    Nairismagi ML, Tan J, Lim JQ, et al. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30:1311–9.PubMedPubMedCentralGoogle Scholar
  264. 264.
    Roberti A, Dobay MP, Bisig B, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 2016;7:12602.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Yabe M, Medeiros LJ, Tang G, et al. Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol. 2016;40:676–88.PubMedGoogle Scholar
  266. 266.
    Muzzafar T, Medeiros LJ. T-cell prolymphocytic leukemia involving lymph node and other tissues. In: Medeiros LJ, editor. Diagnostic pathology, lymph nodes and spleen with extranodal lymphomas. 1st ed. Altona, Manitoba: Amirsys, Inc; 2011:10–72 to 10–79.Google Scholar
  267. 267.
    Catovsky D, Muller-Hermelink HK, Ralfkiaer E. T-cell prolymphocytic leukaemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008. p. 270–1.Google Scholar
  268. 268.
    Garand R, Goasguen J, Brizard A, et al. Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Br J Haematol (Groupe Francais d’Hematologie Cellulaire). 1998;103:488–94.Google Scholar
  269. 269.
    Mallett RB, Matutes E, Catovsky D, Maclennan K, Mortimer PS, Holden CA. Cutaneous infiltration in T-cell prolymphocytic leukaemia. Br J Dermatol. 1995;132:263–6.PubMedGoogle Scholar
  270. 270.
    Osuji N, Matutes E, Catovsky D, Lampert I, Wotherspoon A. Histopathology of the spleen in T-cell large granular lymphocyte leukemia and T-cell prolymphocytic leukemia: a comparative review. Am J Surg Pathol. 2005;29:935–41.PubMedGoogle Scholar
  271. 271.
    Sun Y, Tang G, Hu Z, et al. Comparison of karyotyping, TCL1 fluorescence in situ hybridisation and TCL1 immunohistochemistry in T cell prolymphocytic leukaemia. J Clin Pathol. 2018;71:309–15.PubMedGoogle Scholar
  272. 272.
    Herling M, Patel KA, Hsi ED, et al. TCL1 in B-cell tumors retains its normal b-cell pattern of regulation and is a marker of differentiation stage. Am J Surg Pathol. 2007;31:1123–9.PubMedGoogle Scholar
  273. 273.
    Dearden CE, Matutes E, Cazin B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98:1721–6.PubMedGoogle Scholar
  274. 274.
    Dearden CE, Khot A, Else M, et al. Alemtuzumab therapy in T-cell prolymphocytic leukemia: comparing efficacy in a series treated intravenously and a study piloting the subcutaneous route. Blood. 2011;118:5799–802.PubMedGoogle Scholar
  275. 275.
    Brito-Babapulle V, Hamoudi R, Matutes E, et al. p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T-prolymphocytic leukaemia and Sezary syndrome. Br J Haematol. 2000;110:180–7.PubMedGoogle Scholar
  276. 276.
    Brito-Babapulle V, Catovsky D. Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-prolymphocytic leukemia and T-cell leukemias in patients with ataxia telangiectasia. Cancer Genet Cytogenet. 1991;55:1–9.PubMedGoogle Scholar
  277. 277.
    Costa D, Queralt R, Aymerich M, et al. High levels of chromosomal imbalances in typical and small-cell variants of T-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2003;147:36–43.PubMedGoogle Scholar
  278. 278.
    Hodgkin T. On some morbid appearances of the absorbent glands and spleen. Med Chir Trans (London). 1832;17:68–114.Google Scholar
  279. 279.
    Wilks S. Cases of enlargement of the lymphatic glands and spleen, (or Hodgkin’s disease), with remarks. Guy’s Hospital Rep. 1865;11:56–67.Google Scholar
  280. 280.
    Reed DM. On the pathological changes in Hodgkin’s disease, with especial reference to its relation to tuberculosis. Johns Hopkins Hosp Rep. 1902;10:133–96.Google Scholar
  281. 281.
    Sternberg C. Über eine eigenartige unter dem Bilde der Pseudoleukämie Verlaufende Tuberculose des lymphatischen Apparates. Ztschz Heilk. 1898;19:21–90.Google Scholar
  282. 282.
    Anonymous. Thomas Hodgkin, english physician, 1798–1866. Med Class. 1937;1:731–70.Google Scholar
  283. 283.
    Bonadonna G. Historical review of Hodgkin’s disease. Br J Haematol. 2000;110:504–11.PubMedGoogle Scholar
  284. 284.
    Dawson PJ. The original illustrations of Hodgkin’s disease. Arch Intern Med. 1968;121:288–90.PubMedGoogle Scholar
  285. 285.
    Dawson PJ. The original illustrations of Hodgkin’s disease. Ann Diagn Pathol. 1999;3:386–93.PubMedGoogle Scholar
  286. 286.
    Ortiz-Hidalgo C. A short history of Hodgkin’s disease and Burkitt’s lymphoma. Am J Clin Pathol. 1994;101:S27–33.PubMedGoogle Scholar
  287. 287.
    Pileri SA, Ascani S, Leoncini L, et al. Hodgkin’s lymphoma: the pathologist’s viewpoint. J Clin Pathol. 2002;55:162–76.PubMedPubMedCentralGoogle Scholar
  288. 288.
    Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.PubMedGoogle Scholar
  289. 289.
    Stein H. Hodgkin lymphoma. Introduction. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 322.Google Scholar
  290. 290.
    Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630–6.PubMedGoogle Scholar
  291. 291.
    Hodgkin Lymphoma. Accessed 22 July 2017, at http://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf.
  292. 292.
    Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.PubMedGoogle Scholar
  293. 293.
    Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34:3733–9.PubMedPubMedCentralGoogle Scholar
  294. 294.
    Hoppe RT, Advani RH, Ai WZ, et al. Hodgkin lymphoma, version 2.2015. J Natl Compr Cancer Netw. 2015;13:554–86.Google Scholar
  295. 295.
    Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34:2690–7.PubMedPubMedCentralGoogle Scholar
  296. 296.
    Eberle FC, Mani H, Jaffe ES. Histopathology of Hodgkin’s lymphoma. Cancer J. 2009;15:129–37.PubMedGoogle Scholar
  297. 297.
    Anagnostopoulos I, Hansmann ML, Franssila K, et al. European task force on lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood. 2000;96:1889–99.PubMedGoogle Scholar
  298. 298.
    Hutchison GB. International symposium on Hodgkin’s disease. Session 6. Survival data and prognosis. Criteria of cure: statistical considerations. Natl Cancer Inst Monogr. 1973;36:561–5.PubMedGoogle Scholar
  299. 299.
    Shimkin MB. Hodgkin’s disease; mortality in the United States, 1921–1951; race, sex and age distribution; comparison with leukemia. Blood. 1955;10:1214–27.PubMedGoogle Scholar
  300. 300.
    Shimkin MB, Oppermann KC, Bostick WL, Low-Beer BV. Hodgkin’s disease: an analysis of frequency, distribution and mortality at the University of California Hospital 1914–1951. Ann Intern Med. 1955;42:136–53.PubMedGoogle Scholar
  301. 301.
    Cionini L, Villari N, Ponticelli P, Biti GP, Mungai V. Mediastinal involvement in Hodgkin’s disease: prognostic factors and distribution of intrathoracic adenopathies. Eur J Radiol. 1982;2:301–6.PubMedGoogle Scholar
  302. 302.
    Pina-Oviedo S, Moran CA. Primary mediastinal classical Hodgkin lymphoma. Adv Anat Pathol. 2016;23:285–309.PubMedGoogle Scholar
  303. 303.
    Ferry JA, Linggood RM, Convery KM, Efird JT, Eliseo R, Harris NL. Hodgkin disease, nodular sclerosis type. Implications of histologic subclassification. Cancer. 1993;71:457–63.PubMedGoogle Scholar
  304. 304.
    MacLennan KA, Bennett MH, Tu A, et al. Relationship of histopathologic features to survival and relapse in nodular sclerosing Hodgkin’s disease. A study of 1659 patients. Cancer. 1989;64:1686–93.PubMedGoogle Scholar
  305. 305.
    Hess JL, Bodis S, Pinkus G, Silver B, Mauch P. Histopathologic grading of nodular sclerosis Hodgkin’s disease. Lack of prognostic significance in 254 surgically staged patients. Cancer. 1994;74:708–14.PubMedGoogle Scholar
  306. 306.
    Colby TV, Hoppe RT, Warnke RA. Hodgkin’s disease: a clinicopathologic study of 659 cases. Cancer. 1982;49:1848–58.PubMedGoogle Scholar
  307. 307.
    Gomez-Gelvez JC, Smith LB. Reed-Sternberg-like cells in non-Hodgkin lymphomas. Arch Pathol Lab Med. 2015;139:1205–10.PubMedGoogle Scholar
  308. 308.
    Karube K, Niino D, Kimura Y, Ohshima K. Classical Hodgkin lymphoma, lymphocyte depleted type: clinicopathological analysis and prognostic comparison with other types of classical Hodgkin lymphoma. Pathol Res Pract. 2013;209:201–7.PubMedGoogle Scholar
  309. 309.
    Ali S, Olszewski AJ. Disparate survival and risk of secondary non-Hodgkin lymphoma in histologic subtypes of Hodgkin lymphoma: a population-based study. Leuk Lymphoma. 2014;55:1570–7.PubMedGoogle Scholar
  310. 310.
    Klimm B, Franklin J, Stein H, et al. Lymphocyte-depleted classical Hodgkin’s lymphoma: a comprehensive analysis from the German Hodgkin study group. J Clin Oncol. 2011;29:3914–20.PubMedGoogle Scholar
  311. 311.
    Carbone A, Gloghini A, Aldinucci D, Gattei V, Dalla-Favera R, Gaidano G. Expression pattern of MUM1/IRF4 in the spectrum of pathology of Hodgkin’s disease. Br J Haematol. 2002;117:366–72.PubMedGoogle Scholar
  312. 312.
    Re D, Muschen M, Ahmadi T, et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res. 2001;61:2080–4.PubMedGoogle Scholar
  313. 313.
    Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337:320–2.PubMedGoogle Scholar
  314. 314.
    Uccini S, Monardo F, Ruco LP, et al. High frequency of Epstein-Barr virus genome in HIV-positive patients with Hodgkin’s disease. Lancet. 1989;1:1458.PubMedGoogle Scholar
  315. 315.
    Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320:502–6.PubMedGoogle Scholar
  316. 316.
    Rengstl B, Rieger MA, Newrzela S. On the origin of giant cells in Hodgkin lymphoma. Commun Integr Biol. 2014;7:e28602.PubMedPubMedCentralGoogle Scholar
  317. 317.
    Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9:15–27.PubMedGoogle Scholar
  318. 318.
    Gemici A, Aydogdu I, Terzi H, et al. Nodular lymphocyte predominant Hodgkin’s lymphoma in daily practice: a multicenter experience. Hematol Oncol. 2018;36:116–20.PubMedGoogle Scholar
  319. 319.
    Fanale MA, Cheah CY, Rich A, et al. Encouraging activity for R-CHOP in advanced stage nodular lymphocyte predominant Hodgkin lymphoma. Blood. 2017;130:472–7.PubMedPubMedCentralGoogle Scholar
  320. 320.
    Molin D, Linderoth J, Wahlin BE. Nodular lymphocyte predominant Hodgkin lymphoma in Sweden between 2000 and 2014: an analysis of the Swedish Lymphoma Registry. Br J Haematol. 2017;177:449–56.PubMedGoogle Scholar
  321. 321.
    Hartmann S, Doring C, Jakobus C, et al. Nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma--endpoints of a spectrum of one disease? PLoS One. 2013;8:e78812.PubMedPubMedCentralGoogle Scholar
  322. 322.
    Rudiger T, Gascoyne RD, Jaffe ES, et al. Workshop on the relationship between nodular lymphocyte predominant Hodgkin’s lymphoma and T cell/histiocyte-rich B cell lymphoma. Ann Oncol. 2002;13(Suppl 1):44–51.PubMedGoogle Scholar
  323. 323.
    Ferry JA, Zukerberg LR, Harris NL. Florid progressive transformation of germinal centers. A syndrome affecting young men, without early progression to nodular lymphocyte predominance Hodgkin’s disease. Am J Surg Pathol. 1992;16:252–8.PubMedGoogle Scholar
  324. 324.
    Fan Z, Natkunam Y, Bair E, Tibshirani R, Warnke RA. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27:1346–56.PubMedGoogle Scholar
  325. 325.
    Hartmann S, Eichenauer DA, Plutschow A, et al. The prognostic impact of 49. Variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood. 2013;122:4246–52; quiz 92.PubMedGoogle Scholar
  326. 326.
    Hartmann S, Schuhmacher B, Rausch T, et al. Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia. 2016;30:844–53.PubMedGoogle Scholar
  327. 327.
    Kim HJ, Ko YH, Kim JE, et al. Epstein-Barr virus-associated lymphoproliferative disorders: review and update on 2016 WHO classification. J Pathol Translat Med. 2017;51:352–8.Google Scholar
  328. 328.
    Morscio J, Tousseyn T. Recent insights in the pathogenesis of post-transplantation lymphoproliferative disorders. World J Transplant. 2016;6:505–16.PubMedPubMedCentralGoogle Scholar
  329. 329.
    de Jong D, Roemer MG, Chan JK, et al. B-cell and classical Hodgkin lymphomas associated with immunodeficiency: 2015 SH/EAHP workshop report-part 2. Am J Clin Pathol. 2017;147:153–70.PubMedPubMedCentralGoogle Scholar
  330. 330.
    Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203–20.PubMedGoogle Scholar
  331. 331.
    Natkunam Y, Gratzinger D, de Jong D, et al. Immunodeficiency and dysregulation: report of the 2015 workshop of the Society for Hematopathology/European Association for Haematopathology. Am J Clin Pathol. 2017;147:124–8.PubMedGoogle Scholar
  332. 332.
    Weisenburger DD, Gross TG. Post-transplant lymphoproliferative disorder: a heterogeneous conundrum. Br J Haematol. 2017;179:854–6.PubMedGoogle Scholar
  333. 333.
    Meister MT, Voss S, Schwabe D. Treatment of EBV-associated nodular sclerosing Hodgkin lymphoma in a patient with ataxia telangiectasia with brentuximab vedotin and reduced COPP plus rituximab. Pediatr Blood Cancer. 2015;62:2018–20.PubMedGoogle Scholar
  334. 334.
    Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci. 2015;1356:22–44.PubMedGoogle Scholar
  335. 335.
    Piquer Gibert M, Alsina L, Giner Munoz MT, et al. Non-Hodgkin lymphoma in pediatric patients with common variable immunodeficiency. Eur J Pediatr. 2015;174:1069–76.PubMedGoogle Scholar
  336. 336.
    Chadburn A. Immunodeficiency-associated lymphoid proliferations (ALPS, HIV, and KSHV/HHV8). Semin Diagn Pathol. 2013;30:113–29.PubMedGoogle Scholar
  337. 337.
    Low LK, Song JY. B-cell lymphoproliferative disorders associated with primary and acquired immunodeficiency. Surg Pathol Clin. 2016;9:55–77.PubMedGoogle Scholar
  338. 338.
    Carbone A, Vaccher E, Gloghini A, et al. Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat Rev Clin Oncol. 2014;11:223–38.PubMedGoogle Scholar
  339. 339.
    Olszewski AJ, Fallah J, Castillo JJ. Human immunodeficiency virus-associated lymphomas in the antiretroviral therapy era: analysis of the National Cancer Data Base. Cancer. 2016;122:2689–97.PubMedGoogle Scholar
  340. 340.
    Linke-Serinsoz E, Fend F, Quintanilla-Martinez L. Human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) related lymphomas, pathology view point. Semin Diagn Pathol. 2017;34:352–63.PubMedGoogle Scholar
  341. 341.
    Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol. 2013;23:457–67.PubMedGoogle Scholar
  342. 342.
    Raphael M, Said J, Borisch B, Cesarman E, Harris NL. Lymphomas associated with HIV infection. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 340–2.Google Scholar
  343. 343.
    Chadburn A, Suciu-Foca N, Cesarman E, Reed E, Michler RE, Knowles DM. Post-transplantation lymphoproliferative disorders arising in solid organ transplant recipients are usually of recipient origin. Am J Pathol. 1995;147:1862–70.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Yang Y, Yu B, Chen Y. Blood disorders typically associated with renal transplantation. Front Cell Dev Biol. 2015;3:18.PubMedPubMedCentralGoogle Scholar
  345. 345.
    Kinch A, Baecklund E, Backlin C, et al. A population-based study of 135 lymphomas after solid organ transplantation: the role of Epstein-Barr virus, hepatitis C and diffuse large B-cell lymphoma subtype in clinical presentation and survival. Acta Oncol. 2014;53:669–79.PubMedGoogle Scholar
  346. 346.
    Federmann B, Bonzheim I, Schittenhelm J, et al. EBV-negative aggressive B-cell lymphomas of donor origin after allogeneic hematopoietic stem cell transplantation: a report of three cases. Leuk Lymphoma. 2016;57:2603–11.PubMedGoogle Scholar
  347. 347.
    Menter T, Juskevicius D, Tzankov A. Array CGH-based analysis of post-transplant plasmacytic hyperplasia reveals ‘intact genomes’ arguing against categorizing it as part of the post-transplant lymphoproliferative disease spectrum. Transpl Int. 2015;28:120–2.PubMedGoogle Scholar
  348. 348.
    Menter T, Juskevicius D, Alikian M, et al. Mutational landscape of B-cell post-transplant lymphoproliferative disorders. Br J Haematol. 2017;178:48–56.PubMedGoogle Scholar
  349. 349.
    Morscio J, Finalet Ferreiro J, Vander Borght S, et al. Identification of distinct subgroups of EBV-positive post-transplant diffuse large B-cell lymphoma. Mod Pathol. 2017;30:370–81.PubMedGoogle Scholar
  350. 350.
    Ferreiro JF, Morscio J, Dierickx D, et al. Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern. Haematologica. 2015;100:e275–9.PubMedPubMedCentralGoogle Scholar
  351. 351.
    Margolskee E, Jobanputra V, Jain P, et al. Genetic landscape of T- and NK-cell post-transplant lymphoproliferative disorders. Oncotarget. 2016;7:37636–48.PubMedPubMedCentralGoogle Scholar
  352. 352.
    Gaulard P, Swerdlow SH, Harris NL, Jaffe ES, Sundstrom C. Other iatrogenic immunodeficiency-associated lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 350–1.Google Scholar
  353. 353.
    Loo EY, Medeiros LJ, Aladily TN, et al. Classical Hodgkin lymphoma arising in the setting of iatrogenic immunodeficiency: a clinicopathologic study of 10 cases. Am J Surg Pathol. 2013;37:1290–7.PubMedGoogle Scholar
  354. 354.
    Yamakawa N, Fujimoto M, Kawabata D, et al. A clinical, pathological, and genetic characterization of methotrexate-associated lymphoproliferative disorders. J Rheumatol. 2014;41:293–9.PubMedGoogle Scholar
  355. 355.
    Inui Y, Matsuoka H, Yakushijin K, et al. Methotrexate-associated lymphoproliferative disorders: management by watchful waiting and observation of early lymphocyte recovery after methotrexate withdrawal. Leuk Lymphoma. 2015;56:3045–51.PubMedGoogle Scholar
  356. 356.
    Gion Y, Iwaki N, Takata K, et al. Clinicopathological analysis of methotrexate-associated lymphoproliferative disorders: comparison of diffuse large B-cell lymphoma and classical Hodgkin lymphoma types. Cancer Sci. 2017;108:1271–80.PubMedPubMedCentralGoogle Scholar
  357. 357.
    Pina-Oviedo S, Miranda RN, Medeiros LJ. Cancer therapy-associated lymphoproliferative disorders. An under-recognized type of immunodeficiency-associated lymphoproliferative disorder. Am J Surg Pathol. 2018;42:116–29.PubMedGoogle Scholar
  358. 358.
    Courville EL, Yohe S, Chou D, et al. EBV-negative monomorphic B-cell post-transplant lymphoproliferative disorders are pathologically distinct from EBV-positive cases and frequently contain TP53 mutations. Mod Pathol. 2016;29:1200–11.PubMedGoogle Scholar
  359. 359.
    King RL, Paessler ME, Howard MT, Wertheim GB. Incidental EBV-positivity in paediatric post-transplant specimens demonstrates the need for stringent criteria for diagnosing post-transplant lymphoproliferative disorders. J Clin Pathol. 2017;70:270–3.PubMedGoogle Scholar
  360. 360.
    Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116:1919–23.PubMedPubMedCentralGoogle Scholar
  361. 361.
    Emile JF, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127:2672–81.PubMedPubMedCentralGoogle Scholar
  362. 362.
    Langerhans P. Ueber die Nerven der Menschlichen Haut. Virchow Arch [B]. 1868;44:325–37.Google Scholar
  363. 363.
    Birbeck MS, Breathnach AS, Everall JD. An electron microscopy study of basal melanocytes and high-level clear cell (Langerhans cells) in vitiligo. J Invest Dermatol. 1961;75:51–64.Google Scholar
  364. 364.
    Coppes-Zantinga A, Egeler RM. The Langerhans cell histiocytosis X files revealed. Br J Haematol. 2002;116:3–9.PubMedGoogle Scholar
  365. 365.
    Breathnach AS, Gross M, Basset F, Nezelof C. Freeze-fracture replication of X-granules in cells of cutaneous lesions of histiocytosis-X. Br J Dermatol. 1973;89:571–85.PubMedGoogle Scholar
  366. 366.
    Nezelof C, Basset F, Rousseau MF. Histiocytosis X histogenetic arguments for a Langerhans cell origin. Biomedicine. 1973;18:365–71.PubMedGoogle Scholar
  367. 367.
    Willman CL, Busque L, Griffith BB, et al. Langerhans’-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med. 1994;331:154–60.PubMedGoogle Scholar
  368. 368.
    Yu RC, Chu C, Buluwela L, Chu AC. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343:767–8.PubMedGoogle Scholar
  369. 369.
    Nicholson HS, Egeler RM, Nesbit ME. The epidemiology of Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 1998;12:379–84.PubMedGoogle Scholar
  370. 370.
    Abla O, Egeler RM, Weitzman S. Langerhans cell histiocytosis: current concepts and treatments. Cancer Treat Rev. 2010;36:354–9.PubMedGoogle Scholar
  371. 371.
    Zaveri J, La Q, Yarmish G, Neuman J. More than just Langerhans cell histiocytosis: a radiologic review of histiocytic disorders. Radiographics. 2014;34:2008–24.PubMedGoogle Scholar
  372. 372.
    Tazi A. Adult pulmonary Langerhans’ cell histiocytosis. Eur Respir J. 2006;27:1272–85.PubMedGoogle Scholar
  373. 373.
    Donadieu J, Bernard F, van Noesel M, et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. 2015;126:1415–23.PubMedPubMedCentralGoogle Scholar
  374. 374.
    Egeler RM, Katewa S, Leenen PJ, et al. Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: in memory of Bob Arceci. Pediatr Blood Cancer. 2016;63:1704–12.PubMedGoogle Scholar
  375. 375.
    Haroche J, Cohen-Aubart F, Emile JF, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121:1495–500.PubMedGoogle Scholar
  376. 376.
    Edelweiss M, Medeiros LJ, Suster S, Moran CA. Lymph node involvement by Langerhans cell histiocytosis: a clinicopathologic and immunohistochemical study of 20 cases. Hum Pathol. 2007;38:1463–9.PubMedGoogle Scholar
  377. 377.
    da Costa CE, Annels NE, Faaij CM, Forsyth RG, Hogendoorn PC, Egeler RM. Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med. 2005;201:687–93.PubMedPubMedCentralGoogle Scholar
  378. 378.
    Capper D, Preusser M, Habel A, et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 2011;122:11–9.Google Scholar
  379. 379.
    Haroche J, Charlotte F, Arnaud L, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120:2700–3.PubMedGoogle Scholar
  380. 380.
    Egeler RM, Neglia JP, Puccetti DM, Brennan CA, Nesbit ME. Association of Langerhans cell histiocytosis with malignant neoplasms. Cancer. 1993;71:865–73.PubMedGoogle Scholar
  381. 381.
    Pina-Oviedo S, Medeiros LJ, Li S, et al. Langerhans cell histiocytosis associated with lymphoma: an incidental finding that is not associated with BRAF or MAP2K1 mutations. Mod Pathol. 2017;30:734–44.PubMedPubMedCentralGoogle Scholar
  382. 382.
    Berres ML, Merad M, Allen CE. Progress in understanding the pathogenesis of Langerhans cell histiocytosis: back to Histiocytosis X? Br J Haematol. 2015;169:3–13.PubMedGoogle Scholar
  383. 383.
    Chakraborty R, Hampton OA, Shen X, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014;124:3007–15.PubMedPubMedCentralGoogle Scholar
  384. 384.
    Nelson DS, van Halteren A, Quispel WT, et al. MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54:361–8.PubMedGoogle Scholar
  385. 385.
    Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128:2533–7.PubMedPubMedCentralGoogle Scholar
  386. 386.
    Alayed K, Medeiros LJ, Patel KP, et al. BRAF and MAP2K1 mutations in Langerhans cell histiocytosis: a study of 50 cases. Hum Pathol. 2016;52:61–7.PubMedGoogle Scholar
  387. 387.
    Mourah S, How-Kit A, Meignin V, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47:1785–96.PubMedGoogle Scholar
  388. 388.
    Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211:669–83.PubMedPubMedCentralGoogle Scholar
  389. 389.
    Chester W. Uber lipoidgranulomatose. Virchows Arch Pathol Anat. 1930;279:561–602.Google Scholar
  390. 390.
    Jaffe HL. Gaucher’s disease and certain other inborn metabolic disorders: lipid (cholesterol) granulomatosis. In: Jaffe HL, editor. Metabolic, degenerative and inflammatory diseases of bones and joints. Philadelphia: Lea & Febiger; 1972. p. 535–41.Google Scholar
  391. 391.
    Emile JF, Charlotte F, Amoura Z, Haroche J. BRAF mutations in Erdheim-Chester disease. J Clin Oncol. 2013;31:398.PubMedGoogle Scholar
  392. 392.
    Haroche J, Cohen-Aubart F, Charlotte F, et al. The histiocytosis Erdheim-Chester disease is an inflammatory myeloid neoplasm. Expert Rev Clin Immunol. 2015;11:1033–42.PubMedGoogle Scholar
  393. 393.
    Haroche J, Amoura Z, Dion E, et al. Cardiovascular involvement, an overlooked feature of Erdheim-Chester disease: report of 6 new cases and a literature review. Medicine (Baltimore). 2004;83:371–92.Google Scholar
  394. 394.
    Diamond EL, Dagna L, Hyman DM, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124:483–92.PubMedPubMedCentralGoogle Scholar
  395. 395.
    Chan JK, Lamant L, Algar E, et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood. 2008;112:2965–8.PubMedGoogle Scholar
  396. 396.
    Emile JF, Diamond EL, Helias-Rodzewicz Z, et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood. 2014;124:3016–9.PubMedPubMedCentralGoogle Scholar
  397. 397.
    Diamond EL, Durham BH, Haroche J, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6:154–65.PubMedGoogle Scholar
  398. 398.
    Azoury FJ, Reed RJ. Histiocytosis. Report of an unusual case. N Engl J Med. 1966;274:928–30.PubMedGoogle Scholar
  399. 399.
    Destombes P. Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases). Bull Soc Pathol Exot Filiales. 1965;58:1169–75.PubMedPubMedCentralGoogle Scholar
  400. 400.
    Rosai J, Dorfman RF. Sinus histiocytosis with massive lymphadenopathy. A newly recognized benign clinicopathological entity. Arch Pathol. 1969;87:63–70.PubMedPubMedCentralGoogle Scholar
  401. 401.
    Foucar E, Rosai J, Dorfman RF. Sinus histiocytosis with massive lymphadenopathy. Arch Otolaryngol. 1978;104:687–93.PubMedGoogle Scholar
  402. 402.
    Foucar E, Rosai J, Dorfman RF. Sinus histiocytosis with massive lymphadenopathy. An analysis of 14 deaths occurring in a patient registry. Cancer. 1984;54:1834–40.PubMedGoogle Scholar
  403. 403.
    Foucar E, Rosai J, Dorfman RF, Eyman JM. Immunologic abnormalities and their significance in sinus histiocytosis with massive lymphadenopathy. Am J Clin Pathol. 1984;82:515–25.PubMedGoogle Scholar
  404. 404.
    Dalia S, Sagatys E, Sokol L, Kubal T. Rosai-Dorfman disease: tumor biology, clinical features, pathology, and treatment. Cancer Control. 2014;21:322–7.PubMedPubMedCentralGoogle Scholar
  405. 405.
    Rosai J, Dorfman RF. Sinus histiocytosis with massive lymphadenopathy: a pseudolymphomatous benign disorder. Analysis of 34 cases. Cancer. 1972;30:1174–88.PubMedGoogle Scholar
  406. 406.
    Morgan NV, Morris MR, Cangul H, et al. Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease. PLoS Genet. 2010;6:e1000833.PubMedPubMedCentralGoogle Scholar
  407. 407.
    Rossbach HC, Dalence C, Wynn T, Tebbi C. Faisalabad histiocytosis mimics Rosai-Dorfman disease: brothers with lymphadenopathy, intrauterine fractures, short stature, and sensorineural deafness. Pediatr Blood Cancer. 2006;47:629–32.PubMedGoogle Scholar
  408. 408.
    Levine PH, Jahan N, Murari P, Manak M, Jaffe ES. Detection of human herpesvirus 6 in tissues involved by sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). J Infect Dis. 1992;166:291–5.PubMedGoogle Scholar
  409. 409.
    Mehraein Y, Wagner M, Remberger K, et al. Parvovirus B19 detected in Rosai-Dorfman disease in nodal and extranodal manifestations. J Clin Pathol. 2006;59:1320–6.PubMedPubMedCentralGoogle Scholar
  410. 410.
    Ortonne N, Fillet AM, Kosuge H, Bagot M, Frances C, Wechsler J. Cutaneous Destombes-Rosai-Dorfman disease: absence of detection of HHV-6 and HHV-8 in skin. J Cutan Pathol. 2002;29:113–8.PubMedGoogle Scholar
  411. 411.
    Tsang WY, Yip TT, Chan JK. The Rosai-Dorfman disease histiocytes are not infected by Epstein-Barr virus. Histopathology. 1994;25:88–90.PubMedGoogle Scholar
  412. 412.
    Overholtzer M, Brugge JS. The cell biology of cell-in-cell structures. Nat Rev Mol Cell Biol. 2008;9:796–809.PubMedGoogle Scholar
  413. 413.
    Rastogi V, Sharma R, Misra SR, Yadav L, Sharma V. Emperipolesis – a review. J Clin Diagn Res. 2014;8:ZM01–2.PubMedPubMedCentralGoogle Scholar
  414. 414.
    Liu L, Perry AM, Cao W, et al. Relationship between Rosai-Dorfman disease and IgG4-related disease: study of 32 cases. Am J Clin Pathol. 2013;140:395–402.PubMedGoogle Scholar
  415. 415.
    Zhang X, Hyjek E, Vardiman J. A subset of Rosai-Dorfman disease exhibits features of IgG4-related disease. Am J Clin Pathol. 2013;139:622–32.PubMedGoogle Scholar
  416. 416.
    Menon MP, Evbuomwan MO, Rosai J, Jaffe ES, Pittaluga S. A subset of Rosai-Dorfman disease cases show increased IgG4-positive plasma cells: another red herring or a true association with IgG4-related disease? Histopathology. 2014;64:455–9.PubMedPubMedCentralGoogle Scholar
  417. 417.
    Lu D, Estalilla OC, Manning JT Jr, Medeiros LJ. Sinus histiocytosis with massive lymphadenopathy and malignant lymphoma involving the same lymph node: a report of four cases and review of the literature. Mod Pathol. 2000;13:414–9.PubMedGoogle Scholar
  418. 418.
    Bonetti F, Chilosi M, Menestrina F, et al. Immunohistological analysis of Rosai-Dorfman histiocytosis. A disease of S-100 + CD1-histiocytes. Virchows Arch A Pathol Anat Histopathol. 1987;411:129–35.PubMedGoogle Scholar
  419. 419.
    Chou TC, Tsai KB, Lee CH. Emperipolesis is not pathognomonic for Rosai-Dorfman disease: rhinoscleroma mimicking Rosai-Dorfman disease, a clinical series. J Am Acad Dermatol. 2013;69:1066–7.PubMedGoogle Scholar
  420. 420.
    Garces S, Medeiros LJ, Patel KP, et al. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol. 2017;30:1367–77.PubMedPubMedCentralGoogle Scholar
  421. 421.
    Matter MS, Bihl M, Juskevicius D, Tzankov A. Is Rosai-Dorfman disease a reactive process? Detection of a MAP2K1 L115V mutation in a case of Rosai-Dorfman disease. Virchows Arch. 2017;471:545–7.PubMedGoogle Scholar
  422. 422.
    Ammann S, Lehmberg K, Zur Stadt U, et al. Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. Eur J Immunol. 2017;47:364–73.PubMedGoogle Scholar
  423. 423.
    Arico M, Janka G, Fischer A, et al. Hemophagocytic lymphohistiocytosis. Report of 122 children from the International Registry. FHL Study Group of the Histiocyte Society. Leukemia. 1996;10:197–203.PubMedGoogle Scholar
  424. 424.
    Lehmberg K, Nichols KE, Henter JI, et al. Consensus recommendations for the diagnosis and management of hemophagocytic lymphohistiocytosis associated with malignancies. Haematologica. 2015;100:997–1004.PubMedPubMedCentralGoogle Scholar
  425. 425.
    Daver N, McClain K, Allen CE, et al. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer. 2017;123:3229–40.PubMedPubMedCentralGoogle Scholar
  426. 426.
    Henter JI, Horne A, Arico M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–31.PubMedGoogle Scholar
  427. 427.
    Kolde G, Brocker EB. Multiple skin tumors of indeterminate cells in an adult. J Am Acad Dermatol. 1986;15:591–7.PubMedGoogle Scholar
  428. 428.
    Rezk SA, Spagnolo DV, Brynes RK, Weiss LM. Indeterminate cell tumor: a rare dendritic neoplasm. Am J Surg Pathol. 2008;32:1868–76.PubMedGoogle Scholar
  429. 429.
    Nossal GJ, Abbot A, Mitchell J, Lummus Z. Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. J Exp Med. 1968;127:277–90.PubMedPubMedCentralGoogle Scholar
  430. 430.
    Nossal GJ, Ada GL, Austin CM. Antigens in immunity. IV. Cellular localization of 125-I- and 131-I-labelled flagella in lymph nodes. Aust J Exp Biol Med Sci. 1964;42:311–30.PubMedGoogle Scholar
  431. 431.
    Monda L, Warnke R, Rosai J. A primary lymph node malignancy with features suggestive of dendritic reticulum cell differentiation. A report of 4 cases. Am J Pathol. 1986;122:562–72.PubMedPubMedCentralGoogle Scholar
  432. 432.
    Shek TW, Ho FC, Ng IO, Chan AC, Ma L, Srivastava G. Follicular dendritic cell tumor of the liver. Evidence for an Epstein-Barr virus-related clonal proliferation of follicular dendritic cells. Am J Surg Pathol. 1996;20:313–24.PubMedGoogle Scholar
  433. 433.
    Aguzzi A, Kranich J, Krautler NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol. 2014;35:105–13.PubMedGoogle Scholar
  434. 434.
    Perkins SM, Shinohara ET. Interdigitating and follicular dendritic cell sarcomas: a SEER analysis. Am J Clin Oncol. 2013;36:395–8.PubMedGoogle Scholar
  435. 435.
    Chan JK, Fletcher CD, Nayler SJ, Cooper K. Follicular dendritic cell sarcoma. Clinicopathologic analysis of 17 cases suggesting a malignant potential higher than currently recognized. Cancer. 1997;79:294–313.PubMedGoogle Scholar
  436. 436.
    Chan JKC. Proliferative lesions of follicular dendritic cells: an overview, including a detailed account of follicular dendritic cell sarcoma, a neoplasm with many faces and uncommon etiologic associations. Adv Anat Pathol. 1997;4:387–411.Google Scholar
  437. 437.
    Perez-Ordonez B, Erlandson RA, Rosai J. Follicular dendritic cell tumor: report of 13 additional cases of a distinctive entity. Am J Surg Pathol. 1996;20:944–55.PubMedGoogle Scholar
  438. 438.
    Chan AC, Chan KW, Chan JK, Au WY, Ho WK, Ng WM. Development of follicular dendritic cell sarcoma in hyaline-vascular Castleman’s disease of the nasopharynx: tracing its evolution by sequential biopsies. Histopathology. 2001;38:510–8.PubMedGoogle Scholar
  439. 439.
    Facchetti F, Lorenzi L. Follicular dendritic cells and related sarcoma. Semin Diagn Pathol. 2016;33:262–76.PubMedGoogle Scholar
  440. 440.
    Chen Y, Shi H, Li H, Zhen T, Han A. Clinicopathological features of inflammatory pseudotumour-like follicular dendritic cell tumour of the abdomen. Histopathology. 2016;68:858–65.PubMedGoogle Scholar
  441. 441.
    Choe JY, Go H, Jeon YK, et al. Inflammatory pseudotumor-like follicular dendritic cell sarcoma of the spleen: a report of six cases with increased IgG4-positive plasma cells. Pathol Int. 2013;63:245–51.PubMedGoogle Scholar
  442. 442.
    Ohgami RS, Arber DA, Zehnder JL, Natkunam Y, Warnke RA. Indolent T-lymphoblastic proliferation (iT-LBP): a review of clinical and pathologic features and distinction from malignant T-lymphoblastic lymphoma. Adv Anat Pathol. 2013;20:137–40.PubMedGoogle Scholar
  443. 443.
    Vermi W, Lonardi S, Bosisio D, et al. Identification of CXCL13 as a new marker for follicular dendritic cell sarcoma. J Pathol. 2008;216:356–64.PubMedGoogle Scholar
  444. 444.
    Xie Q, Chen L, Fu K, et al. Podoplanin (d2-40): a new immunohistochemical marker for reactive follicular dendritic cells and follicular dendritic cell sarcomas. Int J Clin Exp Pathol. 2008;1:276–84.PubMedPubMedCentralGoogle Scholar
  445. 445.
    Sun X, Chang KC, Abruzzo LV, Lai R, Younes A, Jones D. Epidermal growth factor receptor expression in follicular dendritic cells: a shared feature of follicular dendritic cell sarcoma and Castleman’s disease. Hum Pathol. 2003;34:835–40.PubMedGoogle Scholar
  446. 446.
    Xu J, Sun HH, Fletcher CD, et al. Expression of programmed cell death 1 ligands (PD-L1 and PD-L2) in histiocytic and dendritic cell disorders. Am J Surg Pathol. 2016;40:443–53.PubMedGoogle Scholar
  447. 447.
    Griffin GK, Sholl LM, Lindeman NI, Fletcher CD, Hornick JL. Targeted genomic sequencing of follicular dendritic cell sarcoma reveals recurrent alterations in NF-kappaB regulatory genes. Mod Pathol. 2016;29:67–74.PubMedGoogle Scholar
  448. 448.
    Andersen EF, Paxton CN, O’Malley DP, et al. Genomic analysis of follicular dendritic cell sarcoma by molecular inversion probe array reveals tumor suppressor-driven biology. Mod Pathol. 2017;30:1321–34.PubMedGoogle Scholar
  449. 449.
    Go H, Jeon YK, Huh J, et al. Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology. 2014;65:261–72.PubMedGoogle Scholar
  450. 450.
    Cossu A, Deiana A, Lissia A, et al. Synchronous interdigitating dendritic cell sarcoma and B-cell small lymphocytic lymphoma in a lymph node. Arch Pathol Lab Med. 2006;130:544–7.PubMedGoogle Scholar
  451. 451.
    Feldman AL, Arber DA, Pittaluga S, et al. Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lymphoma clone. Blood. 2008;111:5433–9.PubMedPubMedCentralGoogle Scholar
  452. 452.
    Fraser CR, Wang W, Gomez M, et al. Transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma to interdigitating dendritic cell sarcoma: evidence for transdifferentiation of the lymphoma clone. Am J Clin Pathol. 2009;132:928–39.PubMedGoogle Scholar
  453. 453.
    Ohtake H, Yamakawa M. Interdigitating dendritic cell sarcoma and follicular dendritic cell sarcoma: histopathological findings for differential diagnosis. J Clin Exp Hematop. 2013;53:179–84.PubMedGoogle Scholar
  454. 454.
    Stowman AM, Mills SE, Wick MR. Spindle cell melanoma and interdigitating dendritic cell sarcoma: do they represent the same process? Am J Surg Pathol. 2016;40:1270–9.PubMedGoogle Scholar
  455. 455.
    O’Malley DP, Agrawal R, Grimm KE, et al. Evidence of BRAF V600E in indeterminate cell tumor and interdigitating dendritic cell sarcoma. Ann Diagn Pathol. 2015;19:113–6.PubMedGoogle Scholar
  456. 456.
    Takahashi E, Nakamura S. Histiocytic sarcoma : an updated literature review based on the 2008 WHO classification. J Clin Exp Hematop. 2013;53:1–8.PubMedGoogle Scholar
  457. 457.
    Brown AF, Fan H, Floyd JR, Henry JM, Higgins RA. Primary central nervous system histiocytic sarcoma arising after precursor B-cell acute lymphoblastic leukemia. J Neuropathol Exp Neurol. 2015;74:1120–6.PubMedGoogle Scholar
  458. 458.
    Feldman AL. Clonal relationships between malignant lymphomas and histiocytic/dendritic cell tumors. Surg Pathol Clin. 2013;6:619–29.PubMedGoogle Scholar
  459. 459.
    Ganapule AP, Gupta M, Kokil G, Viswabandya A. Histiocytic sarcoma with acute lymphoblastic leukemia a rare association: case report and literature review. Indian J Hematol Blood Transfus. 2014;30:305–8.PubMedPubMedCentralGoogle Scholar
  460. 460.
    Howard JE, Dwivedi RC, Masterson L, Jani P. Langerhans cell sarcoma: a systematic review. Cancer Treat Rev. 2015;41:320–31.PubMedGoogle Scholar
  461. 461.
    Nakamine H, Yamakawa M, Yoshino T, Fukumoto T, Enomoto Y, Matsumura I. Langerhans cell histiocytosis and Langerhans cell sarcoma: current understanding and differential diagnosis. J Clin Exp Hematop. 2016;56:109–18.PubMedPubMedCentralGoogle Scholar
  462. 462.
    Wang CS, Chen YP, He WH, et al. Diagnostic value of Wilms tumor 1 and CD44 in Langerhans cell sarcoma: case series of 4 patients. Medicine (Baltimore). 2015;94:e636.Google Scholar
  463. 463.
    Zwerdling T, Won E, Shane L, Javahara R, Jaffe R. Langerhans cell sarcoma: case report and review of world literature. J Pediatr Hematol Oncol. 2014;36:419–25.PubMedGoogle Scholar
  464. 464.
    Weiss LM, O’Malley D. Benign lymphadenopathies. Mod Pathol. 2013;26(Suppl 1):S88–96.PubMedGoogle Scholar
  465. 465.
    Kojima M, Nakamura S, Itoh H, et al. Clinical implication of dermatopathic lymphadenopathy among Japanese: a report of 19 cases. Int J Surg Pathol. 2004;12:127–32.PubMedGoogle Scholar
  466. 466.
    Cooper RA, Dawson PJ, Rambo ON. Dermatopathic lymphadenopathy a clinicopathologic analysis of lymph node biopsy over a fifteen-year period. Calif Med. 1967;106:170–5.PubMedPubMedCentralGoogle Scholar
  467. 467.
    Herrera GA. Light microscopic, S-100 immunostaining, and ultrastructural analysis of dermatopathic lymphadenopathy, with and without associated mycosis fungoides. Am J Clin Pathol. 1987;87:187–95.PubMedGoogle Scholar
  468. 468.
    Weiss LM, Hu E, Wood GS, et al. Clonal rearrangements of T-cell receptor genes in mycosis fungoides and dermatopathic lymphadenopathy. N Engl J Med. 1985;313:539–44.PubMedGoogle Scholar
  469. 469.
    Shamoto M, Osada A, Shinzato M, Kaneko C, Yoshida A. Do epidermal Langerhans cells, migrating from skin lesions, induce the paracortical hyperplasia of dermatopathic lymphadenopathy? Pathol Int. 1996;46:348–54.PubMedGoogle Scholar
  470. 470.
    Burke JS, Colby TV. Dermatopathic lymphadenopathy. Comparison of cases associated and unassociated with mycosis fungoides. Am J Surg Pathol. 1981;5:343–52.PubMedGoogle Scholar
  471. 471.
    Fujimoto Y, Kuzima Y, Yamaguchi K. Cervical subacute necrotizing lymphadenitis: a new clinicopathological entity. Naika. 1972;20:920–7.. [in Japanese].Google Scholar
  472. 472.
    Kikuchi M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippon Ketsueki Gakkai Zasshi. 1972;35:379–80.. [in Japanese].Google Scholar
  473. 473.
    Aqel NM, Ohshima K. Obituaries. Masahiro Kikuchi BMJ. 2013;347:f3524.Google Scholar
  474. 474.
    Kucukardali Y, Solmazgul E, Kunter E, Oncul O, Yildirim S, Kaplan M. Kikuchi-Fujimoto disease: analysis of 244 cases. Clin Rheumatol. 2007;26:50–4.PubMedGoogle Scholar
  475. 475.
    Jung IY, Ann HW, Kim JJ, et al. The incidence and clinical characteristics by gender differences in patients with Kikuchi-Fujimoto disease. Medicine (Baltimore). 2017;96:e6332.Google Scholar
  476. 476.
    Huh J, Chi HS, Kim SS, Gong G. A study of the viral etiology of histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease). J Korean Med Sci. 1998;13:27–30.PubMedPubMedCentralGoogle Scholar
  477. 477.
    Chong Y, Kang CS. Causative agents of Kikuchi-Fujimoto disease (histiocytic necrotizing lymphadenitis): a meta-analysis. Int J Pediatr Otorhinolaryngol. 2014;78:1890–7.PubMedGoogle Scholar
  478. 478.
    Sopena B, Rivera A, Chamorro A, et al. Clinical association between Kikuchis disease and systemic lupus erythematosus: a systematic literature review. Semin Arthritis Rheum. 2017;47:46–52.PubMedGoogle Scholar
  479. 479.
    Kuo TT. Kikuchi’s disease (histiocytic necrotizing lymphadenitis). A clinicopathologic study of 79 cases with an analysis of histologic subtypes, immunohistology, and DNA ploidy. Am J Surg Pathol. 1995;19:798–809.PubMedGoogle Scholar
  480. 480.
    Pilichowska ME, Pinkus JL, Pinkus GS. Histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease): lesional cells exhibit an immature dendritic cell phenotype. Am J Clin Pathol. 2009;131:174–82.PubMedGoogle Scholar
  481. 481.
    Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol. 2013;44:1003–10.PubMedGoogle Scholar
  482. 482.
    Sato H, Asano S, Mori K, Yamazaki K, Wakasa H. Plasmacytoid dendritic cells producing interferon-alpha (IFN-alpha) and inducing Mx1 play an important role for CD4(+) cells and CD8(+) cells in necrotizing lymphadenitis. J Clin Exp Hematop. 2015;55:127–35.PubMedGoogle Scholar
  483. 483.
    Onciu M, Medeiros LJ. Kikuchi-Fujimoto lymphadenitis. Adv Anat Pathol. 2003;10:204–11.PubMedGoogle Scholar
  484. 484.
    Ebell MH. JAMA Patient Page. Infectious mononucleosis. JAMA. 2016;315:1532.PubMedGoogle Scholar
  485. 485.
    Louissaint A Jr, Ferry JA, Soupir CP, Hasserjian RP, Harris NL, Zukerberg LR. Infectious mononucleosis mimicking lymphoma: distinguishing morphological and immunophenotypic features. Mod Pathol. 2012;25:1149–59.PubMedGoogle Scholar
  486. 486.
    Asano S. Granulomatous lymphadenitis. J Clin Exp Hematop. 2012;52:1–16.PubMedGoogle Scholar
  487. 487.
    Nelson CA, Saha S, Mead PS. Cat-scratch disease in the United States, 2005–2013. Emerg Infect Dis. 2016;22:1741–6.PubMedPubMedCentralGoogle Scholar
  488. 488.
    Fontanilla JM, Barnes A, von Reyn CF. Current diagnosis and management of peripheral tuberculous lymphadenitis. Clin Infect Dis. 2011;53:555–62.PubMedGoogle Scholar
  489. 489.
    Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357:2153–65.PubMedGoogle Scholar
  490. 490.
    Eishi Y. Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by Propionibacterium acnes. Biomed Res Int. 2013;2013:935289.PubMedPubMedCentralGoogle Scholar
  491. 491.
    Eishi Y. Etiologic link between sarcoidosis and Propionibacterium acnes. Respir Investig. 2013;51:56–68.PubMedGoogle Scholar
  492. 492.
    Prudent E, Lepidi H, Audoly G, et al. Bartonella henselae is usually not viable in lymph nodes of patients with cat scratch disease. Eur J Clin Microbiol Infect Dis. 2017.Google Scholar
  493. 493.
    Tong D, Manolios N, Howe G, Spencer D. New onset sarcoid-like granulomatosis developing during anti-TNF therapy: an under-recognised complication. Intern Med J. 2012;42:89–94.PubMedGoogle Scholar
  494. 494.
    Hicks DG, Judkins AR, Sickel JZ, Rosier RN, Puzas JE, O’Keefe RJ. Granular histiocytosis of pelvic lymph nodes following total hip arthroplasty. The presence of wear debris, cytokine production, and immunologically activated macrophages. J Bone Joint Surg Am. 1996;78:482–96.PubMedGoogle Scholar
  495. 495.
    Peoc’h M, Pasquier D, Ducros V, et al. Systemic granulomatous reaction in hip prosthesis. Apropos of 2 anatomoclinical cases. Rev Chir Orthop Reparatrice Appar Mot. 1996;82:564–7.PubMedGoogle Scholar
  496. 496.
    Dudorkinova D, Povysil C, Tomanova R. Histiocytosis of regional lymph nodes associated with hip replacement. Gen Diagn Pathol. 1997;143:197–201.PubMedGoogle Scholar
  497. 497.
    Travis WD, Balogh K, Abraham JL. Silicone granulomas: report of three cases and review of the literature. Hum Pathol. 1985;16:19–27.PubMedGoogle Scholar
  498. 498.
    Lazaro MA, Garcia Morteo D, de Benyacar MA, et al. Lymphadenopathy secondary to silicone hand joint prostheses. Clin Exp Rheumatol. 1990;8:17–22.PubMedGoogle Scholar
  499. 499.
    Vaamonde R, Cabrera JM, Vaamonde-Martin RJ, Jimena I, Marcos MJ. Silicone granulomatous lymphadenopathy and siliconomas of the breast. Histol Histopathol. 1997;12:1003–11.PubMedGoogle Scholar
  500. 500.
    Sevinc S, Westhoff CC, Schrader AJ, Olbert PJ, Hofmann R, Hegele A. Pelvic lymphadenitis after total hip arthroplasty: mimicking of lymph node metastases in a patient with prostate cancer. Urologe A. 2010;49:952–6.PubMedGoogle Scholar
  501. 501.
    Hartmann S, Winkelmann R, Metcalf RA, et al. Immunoarchitectural patterns of progressive transformation of germinal centers with and without nodular lymphocyte-predominant Hodgkin lymphoma. Hum Pathol. 2015;46:1655–61.PubMedGoogle Scholar
  502. 502.
    Cheuk W, Chan JK. Lymphadenopathy of IgG4-related disease: an underdiagnosed and overdiagnosed entity. Semin Diagn Pathol. 2012;29:226–34.PubMedGoogle Scholar
  503. 503.
    Chang CC, Osipov V, Wheaton S, Tripp S, Perkins SL. Follicular hyperplasia, follicular lysis, and progressive transformation of germinal centers. A sequential spectrum of morphologic evolution in lymphoid hyperplasia. Am J Clin Pathol. 2003;120:322–6.PubMedGoogle Scholar
  504. 504.
    Nguyen PL, Ferry JA, Harris NL. Progressive transformation of germinal centers and nodular lymphocyte predominance Hodgkin’s disease: a comparative immunohistochemical study. Am J Surg Pathol. 1999;23:27–33.PubMedGoogle Scholar
  505. 505.
    Osborne BM, Butler JJ. Follicular lymphoma mimicking progressive transformation of germinal centers. Am J Clin Pathol. 1987;88:264–9.PubMedGoogle Scholar
  506. 506.
    Burns BF, Colby TV, Dorfman RF. Differential diagnostic features of nodular L & H Hodgkin’s disease, including progressive transformation of germinal centers. Am J Surg Pathol. 1984;8:253–61.PubMedGoogle Scholar
  507. 507.
    Abbondanzo SL, Irey NS, Frizzera G. Dilantin-associated lymphadenopathy. Spectrum of histopathologic patterns. Am J Surg Pathol. 1995;19:675–86.Google Scholar
  508. 508.
    Rosenthal CJ, Noguera CA, Coppola A, Kapelner SN. Pseudolymphoma with mycosis fungoides manifestations, hyperresponsiveness to diphenylhydantoin, and lymphocyte dysregulation. Cancer. 1982;49:2305–14.PubMedGoogle Scholar
  509. 509.
    Schwinghammer TL, Howrie DL. Phenytoin-induced lymphadenopathy. Drug Intell Clin Pharm. 1983;17:460–2.PubMedGoogle Scholar
  510. 510.
    Han HS, Escalon MP, Hsiao B, Serafini A, Lossos IS. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Ann Oncol. 2009;20:309–18.PubMedGoogle Scholar
  511. 511.
    Kamisawa T, Egawa N, Nakajima H. Autoimmune pancreatitis is a systemic autoimmune disease. Am J Gastroenterol. 2003;98:2811–2.PubMedGoogle Scholar
  512. 512.
    Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982–4.PubMedGoogle Scholar
  513. 513.
    Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25:1181–92.PubMedGoogle Scholar
  514. 514.
    Cheuk W, Yuen HK, Chu SY, Chiu EK, Lam LK, Chan JK. Lymphadenopathy of IgG4-related sclerosing disease. Am J Surg Pathol. 2008;32:671–81.PubMedGoogle Scholar
  515. 515.
    Aspock H. Austria’s contribution to toxoplasmosis research and 20 years of toxoplasmosis surveillance of pregnant wome in Austria. Mitt Osterr Ges Tropenmed Parasitol. 1996;18:1–18.. [in German].Google Scholar
  516. 516.
    Del Valle L, Pina-Oviedo S. HIV disorders of the brain: pathology and pathogenesis. Front Biosci. 2006;11:718–32.PubMedGoogle Scholar
  517. 517.
    Eapen M, Mathew CF, Aravindan KP. Evidence based criteria for the histopathological diagnosis of toxoplasmic lymphadenopathy. J Clin Pathol. 2005;58:1143–6.PubMedPubMedCentralGoogle Scholar
  518. 518.
    Piringer-Kuchinka A, Martin I, Thalhammer O. Superior cervicalnuchal lymphadenitis with small groups of epitheloid cell proliferation. Virchows Arch Pathol Anat Physiol Klin Med. 1958;331:522–35.PubMedGoogle Scholar
  519. 519.
    Durlach RA, Kaufer F, Carral L, Hirt J. Toxoplasmic lymphadenitis--clinical and serologic profile. Clin Microbiol Infect. 2003;9:625–31.PubMedGoogle Scholar
  520. 520.
    Lazzi S, Bellan C, Tiacci E, et al. IRTA1+ monocytoid B cells in reactive lymphadenitis show a unique topographic distribution and immunophenotype and a peculiar usage and mutational pattern of IgVH genes. J Pathol. 2006;209:56–66.PubMedGoogle Scholar
  521. 521.
    Hunt JP, Chan JA, Samoszuk M, et al. Hyperplasia of mantle/marginal zone B cells with clear cytoplasm in peripheral lymph nodes. A clinicopathologic study of 35 cases. Am J Clin Pathol. 2001;116:550–9.PubMedGoogle Scholar
  522. 522.
    Abrams DI. Lymphadenopathy related to the acquired immunodeficiency syndrome in homosexual men. Med Clin North Am. 1986;70:693–706.PubMedGoogle Scholar
  523. 523.
    Abrams DI, Kaplan LD, McGrath MS, Volberding PA. AIDS-related benign lymphadenopathy and malignant lymphoma: clinical aspects and virologic interactions. AIDS Res. 1986;2(Suppl 1):S131–40.PubMedGoogle Scholar
  524. 524.
    Porwit A, Bottiger B, Pallesen G, Bodner A, Biberfeld P. Follicular involution in HIV lymphadenopathy. A morphometric study. APMIS. 1989;97:153–65.PubMedGoogle Scholar
  525. 525.
    Chadburn A, Abdul-Nabi AM, Teruya BS, Lo AA. Lymphoid proliferations associated with human immunodeficiency virus infection. Arch Pathol Lab Med. 2013;137:360–70.PubMedGoogle Scholar
  526. 526.
    Wannakrairot P, Leong TY, Leong AS. The morphological spectrum of lymphadenopathy in HIV infected patients. Pathology. 2007;39:223–7.PubMedGoogle Scholar
  527. 527.
    Biberfeld P, Porwit A, Biberfeld G, Harper M, Bodner A, Gallo R. Lymphadenopathy in HIV (HTLV-III/LAV) infected subjects: the role of virus and follicular dendritic cells. Cancer Detect Prev. 1988;12:217–24.PubMedGoogle Scholar
  528. 528.
    Kim HT, Szeto C. Eosinophilic hyperplastic lymphogranuloma, comparison with Mikulicz’s disease. Chin Med J. 1937;23:699–700.Google Scholar
  529. 529.
    Kimura T, Yoshimura S, Ishikawa E. On the unusual granulation combined with hyperplastic changes of lymphatic tissue. Trans Soc Pathol Jpn. 1948;37:179–80.Google Scholar
  530. 530.
    Chen H, Thompson LD, Aguilera NS, Abbondanzo SL. Kimura disease: a clinicopathologic study of 21 cases. Am J Surg Pathol. 2004;28:505–13.PubMedGoogle Scholar
  531. 531.
    Castleman B, Iverson L, Menendez VP. Localized mediastinal lymphnode hyperplasia resembling thymoma. Cancer. 1956;9:822–30.PubMedGoogle Scholar
  532. 532.
    Keller AR, Hochholzer L, Castleman B. Hyaline-vascular and plasma-cell types of giant lymph node hyperplasia of the mediastinum and other locations. Cancer. 1972;29:670–83.PubMedGoogle Scholar
  533. 533.
    Wang HW, Pittaluga S, Jaffe ES. Multicentric Castleman disease: where are we now? Semin Diagn Pathol. 2016;33:294–306.PubMedPubMedCentralGoogle Scholar
  534. 534.
    Iwaki N, Fajgenbaum DC, Nabel CS, et al. Clinicopathologic analysis of TAFRO syndrome demonstrates a distinct subtype of HHV-8-negative multicentric Castleman disease. Am J Hematol. 2016;91:220–6.PubMedGoogle Scholar
  535. 535.
    Dispenzieri A. POEMS syndrome: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92:814–29.PubMedGoogle Scholar
  536. 536.
    Lin O, Frizzera G. Angiomyoid and follicular dendritic cell proliferative lesions in Castleman’s disease of hyaline-vascular type: a study of 10 cases. Am J Surg Pathol. 1997;21:1295–306.PubMedGoogle Scholar
  537. 537.
    Ohgami RS, Zhao S, Ohgami JK, et al. TdT+ T-lymphoblastic populations are increased in Castleman disease, in Castleman disease in association with follicular dendritic cell tumors, and in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2012;36:1619–28.PubMedGoogle Scholar
  538. 538.
    Fajgenbaum DC, Uldrick TS, Bagg A, et al. International, evidence-based consensus diagnostic criteria for HHV-8-negative/idiopathic multicentric Castleman disease. Blood. 2017;129:1646–57.PubMedPubMedCentralGoogle Scholar
  539. 539.
    O’Malley DP, George TL, Orazi A, Abbondanzo SL. Chapter 9: viral lymphadenopathies. In: O’Malley DP, George TL, Orazi A, Abbondanzo SL, editors. Benign and reactive conditions of lymph node and spleen. Washington, DC: ARP Press; 2009. p. 283–326.Google Scholar
  540. 540.
    Kamel OW, LeBrun DP, Berry GJ, Dorfman RF, Warnke RA. Warthin-Finkeldey polykaryocytes demonstrate a T-cell immunophenotype. Am J Clin Pathol. 1992;97:179–83.PubMedGoogle Scholar
  541. 541.
    Orenstein JM. The Warthin-Finkeldey-type giant cell in HIV infection, what is it? Ultrastruct Pathol. 1998;22:293–303.PubMedGoogle Scholar
  542. 542.
    Chen KT. Mycobacterial spindle cell pseudotumor of lymph nodes. Am J Surg Pathol. 1992;16:276–81.PubMedGoogle Scholar
  543. 543.
    Logani S, Lucas DR, Cheng JD, Ioachim HL, Adsay NV. Spindle cell tumors associated with mycobacteria in lymph nodes of HIV-positive patients: ‘Kaposi sarcoma with mycobacteria’ and ‘mycobacterial pseudotumor’. Am J Surg Pathol. 1999;23:656–61.PubMedGoogle Scholar
  544. 544.
    Wood C, Nickoloff BJ, Todes-Taylor NR. Pseudotumor resulting from atypical mycobacterial infection: a “histoid” variety of Mycobacterium avium-intracellulare complex infection. Am J Clin Pathol. 1985;83:524–7.PubMedGoogle Scholar
  545. 545.
    Kojima M, Nakamura S, Shimizu K, et al. Inflammatory pseudotumor of lymph nodes: clinicopathologic and immunohistological study of 11 Japanese cases. Int J Surg Pathol. 2001;9:207–14.PubMedGoogle Scholar
  546. 546.
    Chan JK, Cheuk W, Shimizu M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol. 2001;25:761–8.PubMedGoogle Scholar
  547. 547.
    Kutok JL, Pinkus GS, Dorfman DM, Fletcher CD. Inflammatory pseudotumor of lymph node and spleen: an entity biologically distinct from inflammatory myofibroblastic tumor. Hum Pathol. 2001;32:1382–7.PubMedGoogle Scholar
  548. 548.
    Suster S, Rosai J. Intranodal hemorrhagic spindle-cell tumor with “amianthoid” fibers. Report of six cases of a distinctive mesenchymal neoplasm of the inguinal region that simulates Kaposi’s sarcoma. Am J Surg Pathol. 1989;13:347–57.PubMedGoogle Scholar
  549. 549.
    Weiss SW, Gnepp DR, Bratthauer GL. Palisaded myofibroblastoma. A benign mesenchymal tumor of lymph node. Am J Surg Pathol. 1989;13:341–6.PubMedGoogle Scholar
  550. 550.
    Laskin WB, Lasota JP, Fetsch JF, Felisiak-Golabek A, Wang ZF, Miettinen M. Intranodal palisaded myofibroblastoma: another mesenchymal neoplasm with CTNNB1 (beta-catenin gene) mutations: clinicopathologic, immunohistochemical, and molecular genetic study of 18 cases. Am J Surg Pathol. 2015;39:197–205.PubMedPubMedCentralGoogle Scholar
  551. 551.
    Michal M, Chlumska A, Povysilova V. Intranodal “amianthoid” myofibroblastoma. Report of six cases immunohistochemical and electron microscopical study. Pathol Res Pract. 1992;188:199–204.PubMedGoogle Scholar
  552. 552.
    Goncalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS. 2017;31:1903–16.PubMedPubMedCentralGoogle Scholar
  553. 553.
    Bhana D, Templeton AC, Master SP, Kyalwazi SK. Kaposi sarcoma of lymph nodes. Br J Cancer. 1970;24:464–70.PubMedPubMedCentralGoogle Scholar
  554. 554.
    Chadburn A, Metroka C, Mouradian J. Progressive lymph node histology and its prognostic value in patients with acquired immunodeficiency syndrome and AIDS-related complex. Hum Pathol. 1989;20:579–87.PubMedGoogle Scholar
  555. 555.
    Finkbeiner WE, Egbert BM, Groundwater JR, Sagebiel RW. Kaposi’s sarcoma in young homosexual men: a histopathologic study with particular reference to lymph node involvement. Arch Pathol Lab Med. 1982;106:261–4.PubMedGoogle Scholar
  556. 556.
    Chan JK, Warnke RA, Dorfman R. Vascular transformation of sinuses in lymph nodes. A study of its morphological spectrum and distinction from Kaposi’s sarcoma. Am J Surg Pathol. 1991;15:732–43.PubMedGoogle Scholar
  557. 557.
    Chan JK, Lewin KJ, Lombard CM, Teitelbaum S, Dorfman RF. Histopathology of bacillary angiomatosis of lymph node. Am J Surg Pathol. 1991;15:430–7.PubMedGoogle Scholar
  558. 558.
    Michael M, Koza V. Vascular transformation of lymph node sinuses--a diagnostic pitfall. Histopathologic and immunohistochemical study. Pathol Res Pract. 1989;185:441–4.PubMedGoogle Scholar
  559. 559.
    Michal M, Koza V, Fakan F. Myoid differentiation in vascular transformation of lymph node sinuses due to venous obstruction. Immunohistochemical and ultrastructural studies. Zentralbl Pathol. 1992;138:27–33.PubMedGoogle Scholar
  560. 560.
    Ostrowski ML, Siddiqui T, Barnes RE, Howton MJ. Vascular transformation of lymph node sinuses. A process displaying a spectrum of histologic features. Arch Pathol Lab Med. 1990;114:656–60.PubMedGoogle Scholar
  561. 561.
    Chan JK, Frizzera G, Fletcher CD, Rosai J. Primary vascular tumors of lymph nodes other than Kaposi’s sarcoma. Analysis of 39 cases and delineation of two new entities. Am J Surg Pathol. 1992;16:335–50.PubMedGoogle Scholar
  562. 562.
    Gale E, Torrance J, Bothwell T. The quantitative estimation of total iron stores in human bone marrow. J Clin Invest. 1963;42:1076–82.PubMedPubMedCentralGoogle Scholar
  563. 563.
    Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.PubMedGoogle Scholar
  564. 564.
    Bauermeister DE. Quantitation of bone marrow reticulin--a normal range. Am J Clin Pathol. 1971;56:24–31.PubMedGoogle Scholar
  565. 565.
    Bain BJ. Bone marrow trephine biopsy. J Clin Pathol. 2001;54:737–42.PubMedPubMedCentralGoogle Scholar
  566. 566.
    Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.PubMedGoogle Scholar
  567. 567.
    Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139:351–62.PubMedGoogle Scholar
  568. 568.
    Hasserjian RP, Orazi A, Brunning RD, Germing U, LeBeau MM, Porwit A, Baumann I, Hellstrom-Lindberg E, List AF, Cazzola M, Foucar K. Myelodysplastic syndromes: overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, Siebert R, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 98–106.Google Scholar
  569. 569.
    Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361:1872–85.PubMedGoogle Scholar
  570. 570.
    Valent P, Orazi A, Steensma DP, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8:73483–500.PubMedPubMedCentralGoogle Scholar
  571. 571.
    Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: contemporary review and how we treat. Am J Hematol. 2016;91:76–89.PubMedGoogle Scholar
  572. 572.
    Sekeres MA. The epidemiology of myelodysplastic syndromes. Hematol Oncol Clin North Am. 2010;24:287–94.PubMedGoogle Scholar
  573. 573.
    Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109:1536–42.PubMedGoogle Scholar
  574. 574.
    Smith A, Howell D, Patmore R, Jack A, Roman E. Incidence of haematological malignancy by sub-type: a report from the haematological malignancy research network. Br J Cancer. 2011;105:1684–92.PubMedPubMedCentralGoogle Scholar
  575. 575.
    Kuendgen A, Strupp C, Aivado M, et al. Myelodysplastic syndromes in patients younger than age 50. J Clin Oncol. 2006;24:5358–65.PubMedGoogle Scholar
  576. 576.
    Gattermann N, Kundgen A, Kellermann L, Zeffel M, Paessens B, Germing U. The impact of age on the diagnosis and therapy of myelodysplastic syndromes: results from a retrospective multicenter analysis in Germany. Eur J Haematol. 2013;91:473–82.PubMedGoogle Scholar
  577. 577.
    Warlick ED, Smith BD. Myelodysplastic syndromes: review of pathophysiology and current novel treatment approaches. Curr Cancer Drug Targets. 2007;7:541–58.PubMedGoogle Scholar
  578. 578.
    Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.PubMedPubMedCentralGoogle Scholar
  579. 579.
    Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.PubMedGoogle Scholar
  580. 580.
    Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.PubMedPubMedCentralGoogle Scholar
  581. 581.
    Visconte V, Selleri C, Maciejewski JP, Tiu RV. Molecular pathogenesis of myelodysplastic syndromes. Transl Med UniSa. 2014;8:19–30.PubMedPubMedCentralGoogle Scholar
  582. 582.
    Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol. 2015;95:3–15.PubMedGoogle Scholar
  583. 583.
    Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27; quiz 99.PubMedPubMedCentralGoogle Scholar
  584. 584.
    Foran JM, Shammo JM. Clinical presentation, diagnosis, and prognosis of myelodysplastic syndromes. Am J Med. 2012;125:S6–13.PubMedGoogle Scholar
  585. 585.
    Valent P. Low blood counts: immune mediated, idiopathic, or myelodysplasia. Hematology Am Soc Hematol Educ Program. 2012;2012:485–91.PubMedGoogle Scholar
  586. 586.
    Valent P, Horny HP, Bennett JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31:727–36.PubMedGoogle Scholar
  587. 587.
    Font P, Loscertales J, Benavente C, et al. Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification. Ann Hematol. 2013;92:19–24.PubMedGoogle Scholar
  588. 588.
    Yabe M, Medeiros LJ, Tang G, et al. Dyspoietic changes associated with hepatosplenic T-cell lymphoma are not a manifestation of a myelodysplastic syndrome: analysis of 25 patients. Hum Pathol. 2016;50:109–17.PubMedGoogle Scholar
  589. 589.
    Steensma DP. Dysplasia has A differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7:310–20.PubMedGoogle Scholar
  590. 590.
    Parmentier S, Schetelig J, Lorenz K, et al. Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors. Haematologica. 2012;97:723–30.PubMedPubMedCentralGoogle Scholar
  591. 591.
    Della Porta MG, Travaglino E, Boveri E, et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29:66–75.PubMedGoogle Scholar
  592. 592.
    Invernizzi R, Quaglia F, Porta MG. Importance of classical morphology in the diagnosis of myelodysplastic syndrome. Mediterr J Hematol Infect Dis. 2015;7:e2015035.PubMedPubMedCentralGoogle Scholar
  593. 593.
    Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.PubMedPubMedCentralGoogle Scholar
  594. 594.
    Knipp S, Strupp C, Gattermann N, et al. Presence of peripheral blasts in refractory anemia and refractory cytopenia with multilineage dysplasia predicts an unfavourable outcome. Leuk Res. 2008;32:33–7.PubMedGoogle Scholar
  595. 595.
    Bennett JM, Tuechler H, Aul C, Strupp C, Germing U. Dysplastic erythroid precursors in the myelodysplastic syndromes and the acute myeloid leukemias: is there biologic significance? (how should blasts be counted?). Leuk Res. 2016;47:63–9.PubMedGoogle Scholar
  596. 596.
    Wang SA, Patel KP, Pozdnyakova O, et al. Acute erythroid leukemia with <20% bone marrow blasts is clinically and biologically similar to myelodysplastic syndrome with excess blasts. Mod Pathol. 2016;29:1221–31.PubMedGoogle Scholar
  597. 597.
    Arenillas L, Calvo X, Luno E, et al. Considering bone marrow blasts from nonerythroid cellularity improves the prognostic evaluation of myelodysplastic syndromes. J Clin Oncol. 2016;34:3284–92.PubMedGoogle Scholar
  598. 598.
    Lorand-Metze I, Ribeiro E, Lima CS, Batista LS, Metze K. Detection of hematopoietic maturation abnormalities by flow cytometry in myelodysplastic syndromes and its utility for the differential diagnosis with non-clonal disorders. Leuk Res. 2007;31:147–55.PubMedGoogle Scholar
  599. 599.
    Truong F, Smith BR, Stachurski D, et al. The utility of flow cytometric immunophenotyping in cytopenic patients with a non-diagnostic bone marrow: a prospective study. Leuk Res. 2009;33:1039–46.PubMedGoogle Scholar
  600. 600.
    Tang G, Jorgensen LJ, Zhou Y, et al. Multi-color CD34(+) progenitor-focused flow cytometric assay in evaluation of myelodysplastic syndromes in patients with post cancer therapy cytopenia. Leuk Res. 2012;36:974–81.PubMedGoogle Scholar
  601. 601.
    Matarraz S, Lopez A, Barrena S, et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia. 2008;22:1175–83.PubMedGoogle Scholar
  602. 602.
    Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385–95.PubMedGoogle Scholar
  603. 603.
    Coleman JF, Theil KS, Tubbs RR, Cook JR. Diagnostic yield of bone marrow and peripheral blood FISH panel testing in clinically suspected myelodysplastic syndromes and/or acute myeloid leukemia: a prospective analysis of 433 cases. Am J Clin Pathol. 2011;135:915–20.PubMedGoogle Scholar
  604. 604.
    Jiang H, Xue Y, Wang Q, et al. The utility of fluorescence in situ hybridization analysis in diagnosing myelodysplastic syndromes is limited to cases with karyotype failure. Leuk Res. 2012;36:448–52.PubMedGoogle Scholar
  605. 605.
    Yang W, Stotler B, Sevilla DW, et al. FISH analysis in addition to G-band karyotyping: utility in evaluation of myelodysplastic syndromes? Leuk Res. 2010;34:420–5.PubMedGoogle Scholar
  606. 606.
    Bunting CT, Senior T, Susson Y, Rivera A, Saxe D, Bunting ST. Utility of fluorescence in situ hybridization panel for myelodysplastic syndrome in evaluation of cytopenia in a pediatric hospital: a 5-year retrospective review and utilization management. Lab Med. 2017;48:266–70.PubMedGoogle Scholar
  607. 607.
    Mallo M, Cervera J, Schanz J, et al. Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia. 2011;25:110–20.PubMedGoogle Scholar
  608. 608.
    Bejar R, Greenberg PL. The impact of somatic and germline mutations in myelodysplastic syndromes and related disorders. J Natl Compr Cancer Netw. 2017;15:131–5.Google Scholar
  609. 609.
    Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.PubMedGoogle Scholar
  610. 610.
    Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.PubMedPubMedCentralGoogle Scholar
  611. 611.
    Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.PubMedPubMedCentralGoogle Scholar
  612. 612.
    Keerthivasan G, Mei Y, Zhao B, et al. Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood. 2014;124:780–90.PubMedPubMedCentralGoogle Scholar
  613. 613.
    Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.PubMedPubMedCentralGoogle Scholar
  614. 614.
    Kennedy JA, Ebert BL. Clinical implications of genetic mutations in myelodysplastic syndrome. J Clin Oncol. 2017;35:968–74.PubMedPubMedCentralGoogle Scholar
  615. 615.
    Kwok B, Hall JM, Witte JS, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126:2355–61.PubMedPubMedCentralGoogle Scholar
  616. 616.
    Patnaik MM, Hanson CA, Sulai NH, et al. Prognostic irrelevance of ring sideroblast percentage in World Health Organization-defined myelodysplastic syndromes without excess blasts. Blood. 2012;119:5674–7.PubMedGoogle Scholar
  617. 617.
    Malcovati L, Karimi M, Papaemmanuil E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.PubMedPubMedCentralGoogle Scholar
  618. 618.
    Niemeyer CM, Baumann I. Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program. 2011;2011:84–9.PubMedGoogle Scholar
  619. 619.
    Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127:1387–97; quiz 518.Google Scholar
  620. 620.
    Strahm B, Nollke P, Zecca M, et al. Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome in children: results of the EWOG-MDS 98 study. Leukemia. 2011;25:455–62.PubMedGoogle Scholar
  621. 621.
    Pui CH, Schrappe M, Ribeiro RC, Niemeyer CM. Childhood and adolescent lymphoid and myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2004:118–45.Google Scholar
  622. 622.
    Yue G, Hao S, Fadare O, et al. Hypocellularity in myelodysplastic syndrome is an independent factor which predicts a favorable outcome. Leuk Res. 2008;32:553–8.PubMedGoogle Scholar
  623. 623.
    Steensma DP, Gibbons RJ, Higgs DR. Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood. 2005;105:443–52.PubMedGoogle Scholar
  624. 624.
    Voso MT, Fenu S, Latagliata R, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol. 2013;31:2671–7.PubMedGoogle Scholar
  625. 625.
    Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–92.PubMedPubMedCentralGoogle Scholar
  626. 626.
    Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 2014;55:595–600.PubMedGoogle Scholar
  627. 627.
    Mesa R, Miller CB, Thyne M, et al. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer. 2016;16:167.PubMedPubMedCentralGoogle Scholar
  628. 628.
    Huang X, Cortes J, Kantarjian H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer. 2012;118:3123–7.PubMedPubMedCentralGoogle Scholar
  629. 629.
    Passamonti F, Malabarba L, Orlandi E, et al. Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia. Haematologica. 2003;88:13–8.PubMedGoogle Scholar
  630. 630.
    Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342:1255–65.PubMedGoogle Scholar
  631. 631.
    Finazzi G, Harrison C. Essential thrombocythemia. Semin Hematol. 2005;42:230–8.PubMedGoogle Scholar
  632. 632.
    Harrison CN, Green AR. Essential thrombocythemia. Hematol Oncol Clin North Am. 2003;17:1175–90, vii.PubMedGoogle Scholar
  633. 633.
    Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European countries. Leukemia. 2015;29:1336–43.PubMedGoogle Scholar
  634. 634.
    Gotlib J, Maxson JE, George TI, Tyner JW. The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood. 2013;122:1707–11.PubMedPubMedCentralGoogle Scholar
  635. 635.
    Thomas X. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy. World J Stem Cells. 2012;4:44–52.PubMedPubMedCentralGoogle Scholar
  636. 636.
    Schlieben S, Borkhardt A, Reinisch I, et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia. 1996;10:957–63.PubMedGoogle Scholar
  637. 637.
    de Cytogénétique Hématologique, Groupe Français. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood. 1996;87:3135–42.Google Scholar
  638. 638.
    Keung YK, Beaty M, Powell BL, Molnar I, Buss D, Pettenati M. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leuk Res. 2004;28:579–86.PubMedGoogle Scholar
  639. 639.
    Reboursiere E, Chantepie S, Gac AC, Reman O. Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther. 2015;8:28–33.PubMedGoogle Scholar
  640. 640.
    Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet. 2000;355:1688–91.PubMedGoogle Scholar
  641. 641.
    Jabbour EJ, Cortes JE, Kantarjian HM. Tyrosine kinase inhibition: a therapeutic target for the management of chronic-phase chronic myeloid leukemia. Expert Rev Anticancer Ther. 2013;13:1433–52.PubMedPubMedCentralGoogle Scholar
  642. 642.
    Bartram CR, de Klein A, Hagemeijer A, et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306:277–80.PubMedGoogle Scholar
  643. 643.
    Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. 2015;94(Suppl 2):S107–21.PubMedGoogle Scholar
  644. 644.
    Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88:2410–4.PubMedGoogle Scholar
  645. 645.
    Melo JV, Myint H, Galton DA, Goldman JM. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8:208–11.PubMedGoogle Scholar
  646. 646.
    Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118:686–92.PubMedGoogle Scholar
  647. 647.
    Baccarani M, Soverini S. Molecular response in CML: where is the bar? Blood. 2014;124:469–71.PubMedPubMedCentralGoogle Scholar
  648. 648.
    Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.PubMedPubMedCentralGoogle Scholar
  649. 649.
    Tefferi A, Pardanani A. Myeloproliferative neoplasms: a contemporary review. JAMA Oncol. 2015;1:97–105.PubMedGoogle Scholar
  650. 650.
    Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92:94–108.PubMedGoogle Scholar
  651. 651.
    Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28:1407–13.PubMedGoogle Scholar
  652. 652.
    Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007;21:1960–3.PubMedGoogle Scholar
  653. 653.
    Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.PubMedGoogle Scholar
  654. 654.
    Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5:e337.PubMedPubMedCentralGoogle Scholar
  655. 655.
    Barbui T, Thiele J, Gisslinger H, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol. 2014;89:52–4.PubMedGoogle Scholar
  656. 656.
    Barbui T, Thiele J, Carobbio A, et al. Discriminating between essential thrombocythemia and masked polycythemia vera in JAK2 mutated patients. Am J Hematol. 2014;89:588–90.PubMedGoogle Scholar
  657. 657.
    Kvasnicka HM, Orazi A, Thiele J, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;92:1062–7.PubMedGoogle Scholar
  658. 658.
    Messinezy M, Westwood NB, El-Hemaidi I, Marsden JT, Sherwood RS, Pearson TC. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol. 2002;117:47–53.PubMedGoogle Scholar
  659. 659.
    Tang G, Hidalgo Lopez JE, Wang SA, et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica. 2017;102:1511–8.PubMedPubMedCentralGoogle Scholar
  660. 660.
    Kroll MH, Michaelis LC, Verstovsek S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev. 2015;29:215–21.PubMedGoogle Scholar
  661. 661.
    Smalberg JH, Arends LR, Valla DC, Kiladjian JJ, Janssen HL, Leebeek FW. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120:4921–8.PubMedGoogle Scholar
  662. 662.
    Finazzi G, Caruso V, Marchioli R, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105:2664–70.PubMedGoogle Scholar
  663. 663.
    Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366.PubMedPubMedCentralGoogle Scholar
  664. 664.
    Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.PubMedPubMedCentralGoogle Scholar
  665. 665.
    Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol. 2014;27:129–40.PubMedGoogle Scholar
  666. 666.
    Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7:e525.PubMedPubMedCentralGoogle Scholar
  667. 667.
    Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.PubMedGoogle Scholar
  668. 668.
    Thiele J, Kvasnicka HM, Mullauer L, Buxhofer-Ausch V, Gisslinger B, Gisslinger H. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011;117:5710–8.PubMedGoogle Scholar
  669. 669.
    Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.PubMedGoogle Scholar
  670. 670.
    Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:1262–71.PubMedGoogle Scholar
  671. 671.
    Elliott MA, Tefferi A. Chronic neutrophilic leukemia 2016: update on diagnosis, molecular genetics, prognosis, and management. Am J Hematol. 2016;91:341–9.PubMedGoogle Scholar
  672. 672.
    Maxson JE, Tyner JW. Genomics of chronic neutrophilic leukemia. Blood. 2017;129:715–22.PubMedPubMedCentralGoogle Scholar
  673. 673.
    Maxson JE, Gotlib J, Pollyea DA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368:1781–90.PubMedPubMedCentralGoogle Scholar
  674. 674.
    Elliott MA, Hanson CA, Dewald GW, Smoley SA, Lasho TL, Tefferi A. WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia. 2005;19:313–7.PubMedGoogle Scholar
  675. 675.
    Ogbogu PU, Bochner BS, Butterfield JH, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124:1319–25 e3.PubMedPubMedCentralGoogle Scholar
  676. 676.
    Gotlib J. World Health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90:1077–89.PubMedGoogle Scholar
  677. 677.
    Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130:607–12 e9.PubMedPubMedCentralGoogle Scholar
  678. 678.
    Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129:704–14.PubMedGoogle Scholar
  679. 679.
    Gleich GJ. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol. 2000;105:651–63.PubMedGoogle Scholar
  680. 680.
    Bain BJ. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica. 2010;95:696–8.PubMedPubMedCentralGoogle Scholar
  681. 681.
    Vega F, Medeiros LJ, Bueso-Ramos CE, Arboleda P, Miranda RN. Hematolymphoid neoplasms associated with rearrangements of PDGFRA, PDGFRB, and FGFR1. Am J Clin Pathol. 2015;144:377–92.PubMedGoogle Scholar
  682. 682.
    Catovsky D, Bernasconi C, Verdonck PJ, et al. The association of eosinophilia with lymphoblastic leukaemia or lymphoma: a study of seven patients. Br J Haematol. 1980;45:523–34.PubMedGoogle Scholar
  683. 683.
    Bain BJ, Horny H-P, Hasserjian RP, Orazi A. Chronic eosinophilic leukemia, NOS. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 54–6.Google Scholar
  684. 684.
    Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83:2759–79.PubMedGoogle Scholar
  685. 685.
    Bain BJ. Eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. Br J Haematol. 1996;95:2–9.PubMedGoogle Scholar
  686. 686.
    Wang SA, Tam W, Tsai AG, et al. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol. 2016;29:854–64.PubMedGoogle Scholar
  687. 687.
    Sochacki AL, Fischer MA, Savona MR. Therapeutic approaches in myelofibrosis and myelodysplastic/myeloproliferative overlap syndromes. Onco Targets Ther. 2016;9:2273–86.PubMedPubMedCentralGoogle Scholar
  688. 688.
    Mughal TI, Cross NC, Padron E, et al. An International MDS/MPN Working Group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100:1117–30.PubMedPubMedCentralGoogle Scholar
  689. 689.
    Orazi A, Hasserjian RP, Cazzola M, Thiele J, Malcovati L. Myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 93–4.Google Scholar
  690. 690.
    Orazi A, Bennett JM, Germing U, et al. Chronic myelomonocytic leukemia. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 82–6.Google Scholar
  691. 691.
    Rollison DE, Howlader N, Smith MT, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood. 2008;112:45–52.PubMedGoogle Scholar
  692. 692.
    Cazzola M, Malcovati L, Invernizzi R. Myelodysplastic/myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2011;2011:264–72.PubMedGoogle Scholar
  693. 693.
    Orazi A, Chiu R, O’Malley DP, et al. Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol. 2006;19:1536–45.PubMedGoogle Scholar
  694. 694.
    Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125:3618–26.PubMedPubMedCentralGoogle Scholar
  695. 695.
    Fend F, Horn T, Koch I, Vela T, Orazi A. Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res. 2008;32:1931–5.PubMedGoogle Scholar
  696. 696.
    Orazi A, Bennett JM, Bain BJ, Brunning RD, Thiele J. Atypical chronic myeloid leukemia, BCR-ABL1-negative. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 87–9.Google Scholar
  697. 697.
    Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91:1566–8.PubMedGoogle Scholar
  698. 698.
    Makishima H, Yoshida K, Nguyen N, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45:942–6.PubMedPubMedCentralGoogle Scholar
  699. 699.
    Kosmider O, Itzykson R, Chesnais V, et al. Mutation of the colony-stimulating factor-3 receptor gene is a rare event with poor prognosis in chronic myelomonocytic leukemia. Leukemia. 2013;27:1946–9.PubMedGoogle Scholar
  700. 700.
    Niemeyer CM, Arico M, Basso G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89:3534–43.PubMedGoogle Scholar
  701. 701.
    Baumann I, Bennett JM, Niemeyer CM, Thiele J. Juvenile myelomonocytic leukaemia. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 89–92.Google Scholar
  702. 702.
    Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33:355–62.PubMedGoogle Scholar
  703. 703.
    Sakashita K, Matsuda K, Koike K. Diagnosis and treatment of juvenile myelomonocytic leukemia. Pediatr Int. 2016;58:681–90.PubMedGoogle Scholar
  704. 704.
    Arico M, Biondi A, Pui CH. Juvenile myelomonocytic leukemia. Blood. 1997;90:479–88.PubMedGoogle Scholar
  705. 705.
    Niemeyer CM, Loh ML, Cseh A, et al. Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia. Haematologica. 2015;100:17–22.PubMedPubMedCentralGoogle Scholar
  706. 706.
    Broseus J, Florensa L, Zipperer E, et al. Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis. Haematologica. 2012;97:1036–41.PubMedPubMedCentralGoogle Scholar
  707. 707.
    Broseus J, Alpermann T, Wulfert M, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013;27:1826–31.PubMedGoogle Scholar
  708. 708.
    DiNardo CD, Daver N, Jain N, et al. Myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN, U): natural history and clinical outcome by treatment strategy. Leukemia. 2014;28:958–61.PubMedPubMedCentralGoogle Scholar
  709. 709.
    Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology Am Soc Hematol Educ Program. 2004:80–97.Google Scholar
  710. 710.
    Schlenk RF, Dohner H. Genomic applications in the clinic: use in treatment paradigm of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2013;2013:324–30.PubMedGoogle Scholar
  711. 711.
    De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441.PubMedPubMedCentralGoogle Scholar
  712. 712.
    Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120:3187–205.PubMedGoogle Scholar
  713. 713.
    Puumala SE, Ross JA, Aplenc R, Spector LG. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer. 2013;60:728–33.PubMedPubMedCentralGoogle Scholar
  714. 714.
    Sill H, Olipitz W, Zebisch A, Schulz E, Wolfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br J Pharmacol. 2011;162:792–805.PubMedPubMedCentralGoogle Scholar
  715. 715.
    Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36.PubMedPubMedCentralGoogle Scholar
  716. 716.
    Dohner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.PubMedGoogle Scholar
  717. 717.
    Saultz JN, Garzon R. Acute myeloid leukemia: a concise review. J Clin Med. 2016;5:33.PubMedCentralGoogle Scholar
  718. 718.
    Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.PubMedGoogle Scholar
  719. 719.
    Badar T, Shetty A, Bueso-Ramos C, et al. Bone marrow necrosis in acute leukemia: clinical characteristic and outcome. Am J Hematol. 2015;90:769–73.PubMedPubMedCentralGoogle Scholar
  720. 720.
    Foucar K, Reichard K, Czuchlewski D. Bone marrow pathology. 3rd ed. ASCP: Chicago; 2010.Google Scholar
  721. 721.
    Gorczyca W, Sun ZY, Cronin W, Li X, Mau S, Tugulea S. Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol. 2011;103:221–66.PubMedGoogle Scholar
  722. 722.
    Mrozek K, Bloomfield CD. Clinical significance of the most common chromosome translocations in adult acute myeloid leukemia. J Natl Cancer Inst Monogr. 2008:52–7.Google Scholar
  723. 723.
    Baldus CD, Mrozek K, Marcucci G, Bloomfield CD. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br J Haematol. 2007;137:387–400.PubMedGoogle Scholar
  724. 724.
    Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.PubMedGoogle Scholar
  725. 725.
    Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451–8.PubMedGoogle Scholar
  726. 726.
    Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.PubMedGoogle Scholar
  727. 727.
    Weinberg OK, Arber DA. Acute myeloid leukemia with myelodysplasia-related changes: a new definition. Surg Pathol Clin. 2010;3:1153–64.PubMedGoogle Scholar
  728. 728.
    Diaz-Beya M, Rozman M, Pratcorona M, et al. The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate-risk cytogenetics is dependent on NPM1 mutational status. Blood. 2010;116:6147–8.PubMedGoogle Scholar
  729. 729.
    Bacher U, Schnittger S, Macijewski K, et al. Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood. 2012;119:4719–22.PubMedGoogle Scholar
  730. 730.
    Granfeldt Ostgard LS, Medeiros BC, Sengelov H, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a National Population-Based Cohort Study. J Clin Oncol. 2015;33:3641–9.PubMedGoogle Scholar
  731. 731.
    Zahid MF, Parnes A, Savani BN, Litzow MR, Hashmi SK. Therapy-related myeloid neoplasms – what have we learned so far? World J Stem Cells. 2016;8:231–42.PubMedPubMedCentralGoogle Scholar
  732. 732.
    Yilmaz AF, Saydam G, Sahin F, Baran Y. Granulocytic sarcoma: a systematic review. Am J Blood Res. 2013;3:265–70.PubMedPubMedCentralGoogle Scholar
  733. 733.
    Campidelli C, Agostinelli C, Stitson R, Pileri SA. Myeloid sarcoma: extramedullary manifestation of myeloid disorders. Am J Clin Pathol. 2009;132:426–37.PubMedGoogle Scholar
  734. 734.
    Bakst RL, Tallman MS, Douer D, Yahalom J. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118:3785–93.PubMedGoogle Scholar
  735. 735.
    Yoshida K, Toki T, Okuno Y, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.PubMedGoogle Scholar
  736. 736.
    Shi Y, Wang E. Blastic plasmacytoid dendritic cell neoplasm: a clinicopathologic review. Arch Pathol Lab Med. 2014;138:564–9.PubMedGoogle Scholar
  737. 737.
    Bueno C, Almeida J, Lucio P, et al. Incidence and characteristics of CD4(+)/HLA DRhi dendritic cell malignancies. Haematologica. 2004;89:58–69.PubMedGoogle Scholar
  738. 738.
    Ng AP, Lade S, Rutherford T, McCormack C, Prince HM, Westerman DA. Primary cutaneous CD4+/CD56+ hematodermic neoplasm (blastic NK-cell lymphoma): a report of five cases. Haematologica. 2006;91:143–4.PubMedGoogle Scholar
  739. 739.
    Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98:239–46.PubMedPubMedCentralGoogle Scholar
  740. 740.
    Jacob MC, Chaperot L, Mossuz P, et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica. 2003;88:941–55.PubMedGoogle Scholar
  741. 741.
    Facchetti F, Pileri SA, Agostinelli C, et al. Cytoplasmic nucleophosmin is not detected in blastic plasmacytoid dendritic cell neoplasm. Haematologica. 2009;94:285–8.PubMedGoogle Scholar
  742. 742.
    Garnache-Ottou F, Feuillard J, Saas P. Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity? Br J Haematol. 2007;136:539–48.PubMedGoogle Scholar
  743. 743.
    Silverman BG, Brown SL, Bright RA, Kaczmarek RG, Arrowsmith-Lowe JB, Kessler DA. Reported complications of silicone gel breast implants: an epidemiologic review. Ann Intern Med. 1996;124:744–56.PubMedGoogle Scholar
  744. 744.
    Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24:3904–11.PubMedGoogle Scholar
  745. 745.
    Park SH, Chi HS, Min SK, Park BG, Jang S, Park CJ. Prognostic impact of c-KIT mutations in core binding factor acute myeloid leukemia. Leuk Res. 2011;35:1376–83.PubMedGoogle Scholar
  746. 746.
    Park SH, Lee HJ, Kim IS, et al. Incidences and prognostic impact of c-KIT, WT1, CEBPA, and CBL mutations, and mutations associated with epigenetic modification in core binding factor acute myeloid leukemia: a multicenter study in a Korean population. Ann Lab Med. 2015;35:288–97.PubMedPubMedCentralGoogle Scholar
  747. 747.
    Li HY, Deng DH, Huang Y, et al. Favorable prognosis of biallelic CEBPA gene mutations in acute myeloid leukemia patients: a meta-analysis. Eur J Haematol. 2015;94:439–48.PubMedGoogle Scholar
  748. 748.
    Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37:1445–50.PubMedGoogle Scholar
  749. 749.
    Grossmann V, Schnittger S, Kohlmann A, et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120:2963–72.PubMedGoogle Scholar
  750. 750.
    Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28:1586–95.PubMedGoogle Scholar
  751. 751.
    Cogan E, Schandene L, Crusiaux A, Cochaux P, Velu T, Goldman M. Brief report: clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N Engl J Med. 1994;330:535–8.PubMedGoogle Scholar
  752. 752.
    Simon HU, Plotz SG, Dummer R, Blaser K. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med. 1999;341:1112–20.PubMedGoogle Scholar
  753. 753.
    Tefferi A, Gotlib J, Pardanani A. Hypereosinophilic syndrome and clonal eosinophilia: point-of-care diagnostic algorithm and treatment update. Mayo Clin Proc. 2010;85:158–64.PubMedPubMedCentralGoogle Scholar
  754. 754.
    Valent P, Gleich GJ, Reiter A, et al. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol. 2012;5:157–76.PubMedPubMedCentralGoogle Scholar
  755. 755.
    Bain BJ, Horny H-P, Arber DA, Tefferi A, Hasserjian RP. Myeloid/lymphoid neoplasms with eosinophilia and rearrangements of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues (Revised 4th edition). 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2017. p. 72–9.Google Scholar
  756. 756.
    Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22:1999–2010.PubMedGoogle Scholar
  757. 757.
    Vandenberghe P, Wlodarska I, Michaux L, et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia. 2004;18:734–42.PubMedGoogle Scholar
  758. 758.
    Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348:1201–14.PubMedGoogle Scholar
  759. 759.
    La Starza R, Specchia G, Cuneo A, et al. The hypereosinophilic syndrome: fluorescence in situ hybridization detects the del(4)(q12)-FIP1L1/PDGFRA but not genomic rearrangements of other tyrosine kinases. Haematologica. 2005;90:596–601.PubMedGoogle Scholar
  760. 760.
    Pardanani A, Ketterling RP, Li CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. 2006;30:965–70.PubMedGoogle Scholar
  761. 761.
    Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92:1173–9.PubMedGoogle Scholar
  762. 762.
    Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia. 2009;23:845–51.PubMedGoogle Scholar
  763. 763.
    Qu SQ, Qin TJ, Xu ZF, et al. Long-term outcomes of imatinib in patients with FIP1L1/PDGFRA associated chronic eosinophilic leukemia: experience of a single center in China. Oncotarget. 2016;7:33229–36.PubMedPubMedCentralGoogle Scholar
  764. 764.
    Arefi M, Garcia JL, Penarrubia MJ, et al. Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol. 2012;89:37–41.PubMedGoogle Scholar
  765. 765.
    Lierman E, Cools J. TV6 and PDGFRB: a license to fuse. Haematologica. 2007;92:145–7.PubMedGoogle Scholar
  766. 766.
    Ondrejka SL, Jegalian AG, Kim AS, et al. PDGFRB-rearranged T-lymphoblastic leukemia/lymphoma occurring with myeloid neoplasms: the missing link supporting a stem cell origin. Haematologica. 2014;99:e148–51.PubMedPubMedCentralGoogle Scholar
  767. 767.
    Montano-Almendras CP, Essaghir A, Schoemans H, et al. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-kappaB. Haematologica. 2012;97:1064–72.PubMedPubMedCentralGoogle Scholar
  768. 768.
    David M, Cross NC, Burgstaller S, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood. 2007;109:61–4.PubMedGoogle Scholar
  769. 769.
    Apperley JF, Gardembas M, Melo JV, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med. 2002;347:481–7.PubMedGoogle Scholar
  770. 770.
    Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010;41:461–76.PubMedGoogle Scholar
  771. 771.
    Miranda RN, Medeiros LJ. Blastic T/myeloid neoplasm associated with ZMYM2-FGFR1. In: Medeiros LJ, Miranda RN, editors. Diagnostic pathology: lymph nodes and Extranodal lymphomas. 2nd ed. Salt Lake City: Elsevier; 2017. p. 802–11.Google Scholar
  772. 772.
    Wang W, Tang G, Kadia T, et al. Cytogenetic evolution associated with disease progression in hematopoietic neoplasms with t(8;22)(p11;q11)/BCR-FGFR1 rearrangement. J Natl Compr Cancer Netw. 2016;14:708–11.Google Scholar
  773. 773.
    Montenegro-Garreaud X, Miranda RN, Reynolds A, et al. Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/BCR-FGFR1: a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase. Hum Pathol. 2017;65:147–56.PubMedGoogle Scholar
  774. 774.
    Horny R-P, Akin C, Arber DA, Peterson LC, Tefferi A, Metcalfe DD, Bennett JM, Bain BJ, Escribano L, Valent P. Mastocytosis. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 62–9.Google Scholar
  775. 775.
    Miranda RN, Bueso-Ramos CE, Medeiros LJ. Systemic mastocytosis. In: Miranda RN, Medeiros LJ, editors. Diagnostic pathology: lymph nodes and extranodal lymphomas. Salt Lake City; 2017. p. 860–73.Google Scholar
  776. 776.
    Cohen SS, Skovbo S, Vestergaard H, et al. Epidemiology of systemic mastocytosis in Denmark. Br J Haematol. 2014;166:521–8.PubMedGoogle Scholar
  777. 777.
    Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med. 2015;373:1885–6.PubMedGoogle Scholar
  778. 778.
    Azana JM, Torrelo A, Matito A. Update on mastocytosis (Part 1): pathophysiology, clinical features, and diagnosis. Actas Dermosifiliogr. 2016;107:5–14.PubMedGoogle Scholar
  779. 779.
    Azana JM, Torrelo A, Matito A. Update on mastocytosis (Part 2): categories, prognosis, and treatment. Actas Dermosifiliogr. 2016;107:15–22.PubMedGoogle Scholar
  780. 780.
    Pardanani A. Systemic mastocytosis in adults: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90:250–62.PubMedGoogle Scholar
  781. 781.
    Wang SA, Hutchinson L, Tang G, et al. Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease: clinical significance and comparison of chomosomal abnormalities in SM and AHNMD components. Am J Hematol. 2013;88:219–24.PubMedPubMedCentralGoogle Scholar
  782. 782.
    Miranda RN, Esparza AR, Sambandam S, Medeiros LJ. Systemic mast cell disease presenting with peripheral blood eosinophilia. Hum Pathol. 1994;25:727–30.PubMedGoogle Scholar
  783. 783.
    Akin C, Valent P. Diagnostic criteria and classification of mastocytosis in 2014. Immunol Allergy Clin N Am. 2014;34:207–18.Google Scholar
  784. 784.
    Meni C, Bruneau J, Georgin-Lavialle S, et al. Paediatric mastocytosis: a systematic review of 1747 cases. Br J Dermatol. 2015;172:642–51.PubMedGoogle Scholar
  785. 785.
    Huang L, Wang SA, Konoplev S, et al. Well-differentiated systemic mastocytosis showed excellent clinical response to imatinib in the absence of known molecular genetic abnormalities: a case report. Medicine (Baltimore). 2016;95:e4934.Google Scholar
  786. 786.
    Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577.PubMedPubMedCentralGoogle Scholar
  787. 787.
    Paul S, Kantarjian H, Jabbour EJ. Adult acute lymphoblastic leukemia. Mayo Clin Proc. 2016;91:1645–66.PubMedGoogle Scholar
  788. 788.
    Alvarnas JC, Brown PA, Aoun P, et al. Acute lymphoblastic leukemia, version 2.2015. J Natl Compr Cancer Netw. 2015;13:1240–79.Google Scholar
  789. 789.
    Jabbour E, O’Brien S, Konopleva M, Kantarjian H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015;121:2517–28.PubMedGoogle Scholar
  790. 790.
    Rowe JM. Prognostic factors in adult acute lymphoblastic leukaemia. Br J Haematol. 2010;150:389–405.PubMedGoogle Scholar
  791. 791.
    Rabin KR, Poplack DG. Management strategies in acute lymphoblastic leukemia. Oncology (Williston Park). 2011;25:328–35.Google Scholar
  792. 792.
    Borowitz MJ, Chan JDC, Downing JR, Le Beau MM, Arber DA. B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, Siebert R, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th Revised ed. Lyon: IARC; 2017. p. 203–9.Google Scholar
  793. 793.
    Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood. 2012;119:34–43.PubMedPubMedCentralGoogle Scholar
  794. 794.
    Soslow RA, Baergen RN, Warnke RA. B-lineage lymphoblastic lymphoma is a clinicopathologic entity distinct from other histologically similar aggressive lymphomas with blastic morphology. Cancer. 1999;85:2648–54.PubMedGoogle Scholar
  795. 795.
    Khalidi HS, Chang KL, Medeiros LJ, et al. Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol. 1999;111:467–76.PubMedGoogle Scholar
  796. 796.
    Nachman JB, Heerema NA, Sather H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.PubMedPubMedCentralGoogle Scholar
  797. 797.
    Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology Am Soc Hematol Educ Program. 2014;2014:174–80.PubMedGoogle Scholar
  798. 798.
    Tasian SK, Hurtz C, Wertheim GB, et al. High incidence of Philadelphia chromosome-like acute lymphoblastic leukemia in older adults with B-ALL. Leukemia. 2017;31:981–4.PubMedGoogle Scholar
  799. 799.
    Teitell MA, Pandolfi PP. Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol. 2009;4:175–98.PubMedGoogle Scholar
  800. 800.
    Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23:6306–15.PubMedGoogle Scholar
  801. 801.
    Yao QM, Liu KY, Gale RP, et al. Prognostic impact of IKZF1 deletion in adults with common B-cell acute lymphoblastic leukemia. BMC Cancer. 2016;16:269.PubMedPubMedCentralGoogle Scholar
  802. 802.
    Yamashita Y, Shimada A, Yamada T, et al. IKZF1 and CRLF2 gene alterations correlate with poor prognosis in Japanese BCR-ABL1-negative high-risk B-cell precursor acute lymphoblastic leukemia. Pediatr Blood Cancer. 2013;60:1587–92.PubMedGoogle Scholar
  803. 803.
    Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.PubMedPubMedCentralGoogle Scholar
  804. 804.
    Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.PubMedPubMedCentralGoogle Scholar
  805. 805.
    Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129:572–81.PubMedPubMedCentralGoogle Scholar
  806. 806.
    Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–8.PubMedPubMedCentralGoogle Scholar
  807. 807.
    Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41:1243–6.PubMedPubMedCentralGoogle Scholar
  808. 808.
    Russell LJ, Capasso M, Vater I, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114:2688–98.PubMedGoogle Scholar
  809. 809.
    Russell LJ, Jones L, Enshaei A, et al. Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2017;56:363–72.PubMedPubMedCentralGoogle Scholar
  810. 810.
    Iacobucci I, Li Y, Roberts KG, et al. Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia. Cancer Cell. 2016;29:186–200.PubMedPubMedCentralGoogle Scholar
  811. 811.
    Lengline E, Beldjord K, Dombret H, Soulier J, Boissel N, Clappier E. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98:e146–8.PubMedPubMedCentralGoogle Scholar
  812. 812.
    Heerema NA, Carroll AJ, Devidas M, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children’s oncology group. J Clin Oncol. 2013;31:3397–402.PubMedPubMedCentralGoogle Scholar
  813. 813.
    Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.PubMedGoogle Scholar
  814. 814.
    Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.PubMedGoogle Scholar
  815. 815.
    Borowitz MJ, Chan JDC, Bene M-C, Arber DA. T-lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, Siebert R, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 209–12.Google Scholar
  816. 816.
    Inhorn RC, Aster JC, Roach SA, et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood. 1995;85:1881–7.PubMedGoogle Scholar
  817. 817.
    Zhou Y, Fan X, Routbort M, et al. Absence of terminal deoxynucleotidyl transferase expression identifies a subset of high-risk adult T-lymphoblastic leukemia/lymphoma. Mod Pathol. 2013;26:1338–45.PubMedGoogle Scholar
  818. 818.
    Hann IM, Richards SM, Eden OB, Hill FG. Analysis of the immunophenotype of children treated on the Medical Research Council United Kingdom Acute Lymphoblastic Leukaemia Trial XI (MRC UKALLXI). Medical Research Council Childhood Leukaemia Working Party. Leukemia. 1998;12:1249–55.PubMedGoogle Scholar
  819. 819.
    Borowitz MJ, Chan JKC, Arber DA, Miller CB. T lymphoblastic/lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, editors. WHO classification of tumours of haematopoietic and lymphoid tissue. Lyon: IARC; 2017.Google Scholar
  820. 820.
    Jain N, Lamb AV, O’Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127:1863–9.PubMedPubMedCentralGoogle Scholar
  821. 821.
    Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.PubMedPubMedCentralGoogle Scholar
  822. 822.
    Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510.PubMedGoogle Scholar
  823. 823.
    Han X, Bueso-Ramos CE. Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol. 2007;127:528–44.PubMedGoogle Scholar
  824. 824.
    Meijerink JP. Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol. 2010;23:307–18.PubMedGoogle Scholar
  825. 825.
    Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.PubMedGoogle Scholar
  826. 826.
    Malyukova A, Dohda T, von der Lehr N, et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 2007;67:5611–6.PubMedGoogle Scholar
  827. 827.
    Borowitz MJ, Bene M-C, Harris NL, Porwit A, Matutes E, Arber DA. Acute leukemia of ambiguous lineage. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017. p. 180–7.Google Scholar
  828. 828.
    Naghashpour M, Lancet J, Moscinski L, Zhang L. Mixed phenotype acute leukemia with t(11;19)(q23;p13.3)/ MLL-MLLT1(ENL), B/T-lymphoid type: a first case report. Am J Hematol. 2010;85:451–4.PubMedGoogle Scholar
  829. 829.
    Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24:1844–51.PubMedGoogle Scholar
  830. 830.
    Owaidah TM, Al Beihany A, Iqbal MA, Elkum N, Roberts GT. Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system. Leukemia. 2006;20:620–6.PubMedGoogle Scholar
  831. 831.
    Legrand O, Perrot JY, Simonin G, et al. Adult biphenotypic acute leukaemia: an entity with poor prognosis which is related to unfavourable cytogenetics and P-glycoprotein over-expression. Br J Haematol. 1998;100:147–55.PubMedGoogle Scholar
  832. 832.
    Lee JH, Min YH, Chung CW, et al. Prognostic implications of the immunophenotype in biphenotypic acute leukemia. Leuk Lymphoma. 2008;49:700–9.PubMedGoogle Scholar
  833. 833.
    Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113:5083–9.PubMedPubMedCentralGoogle Scholar
  834. 834.
    Buccheri V, Matutes E, Dyer MJ, Catovsky D. Lineage commitment in biphenotypic acute leukemia. Leukemia. 1993;7:919–27.PubMedGoogle Scholar
  835. 835.
    Killick S, Matutes E, Powles RL, et al. Outcome of biphenotypic acute leukemia. Haematologica. 1999;84:699–706.PubMedGoogle Scholar
  836. 836.
    Xu XQ, Wang JM, Lu SQ, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94:919–27.PubMedPubMedCentralGoogle Scholar
  837. 837.
    Zheng C, Wu J, Liu X, Ding K, Cai X, Zhu W. What is the optimal treatment for biphenotypic acute leukemia? Haematologica. 2009;94:1778–80; author reply 80.PubMedPubMedCentralGoogle Scholar
  838. 838.
    Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5:606–16.PubMedGoogle Scholar
  839. 839.
    O’Malley DP, Louissaint A Jr, Vasef MA, et al. Recommendations for gross examination and sampling of surgical specimens of the spleen. Ann Diagn Pathol. 2015;19:288–95.PubMedGoogle Scholar
  840. 840.
    Shimono J, Miyoshi H, Kamimura T, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol. 2017;96:2063–70.PubMedGoogle Scholar
  841. 841.
    Piris MA, Onaindia A, Mollejo M. Splenic marginal zone lymphoma. Best practice & research. Clin Haematol. 2017;30:56–64.Google Scholar
  842. 842.
    Mihaila RG. Hepatitis C virus – associated B cell non-Hodgkin’s lymphoma. World J Gastroenterol: WJG. 2016;22:6214–23.PubMedGoogle Scholar
  843. 843.
    Xiong W, Lv R, Li H, et al. Prevalence of hepatitis B and hepatitis C viral infections in various subtypes of B-cell non-Hodgkin lymphoma: confirmation of the association with splenic marginal zone lymphoma. Blood Cancer J. 2017;7:e548.PubMedPubMedCentralGoogle Scholar
  844. 844.
    Xing KH, Kahlon A, Skinnider BF, et al. Outcomes in splenic marginal zone lymphoma: analysis of 107 patients treated in British Columbia. Br J Haematol. 2015;169:520–7.PubMedGoogle Scholar
  845. 845.
    Kalpadakis C, Pangalis GA, Angelopoulou MK, Vassilakopoulos TP. Treatment of splenic marginal zone lymphoma. Best practice & research. Clin Haematol. 2017;30:139–48.Google Scholar
  846. 846.
    Starr AG, Caimi PF, Fu P, et al. Splenic marginal zone lymphoma: excellent outcomes in 64 patients treated in the rituximab era. Hematology. 2017;22:405–11.PubMedGoogle Scholar
  847. 847.
    Sreedharanunni S, Sachdeva MU, Malhotra P, et al. Role of blood and bone marrow examination in the diagnosis of mature lymphoid neoplasms in patients presenting with isolated splenomegaly. Hematology. 2015;20:530–7.PubMedGoogle Scholar
  848. 848.
    Jimenez C, Sebastian E, Chillon MC, et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom’s macroglobulinemia. Leukemia. 2013;27:1722–8.PubMedGoogle Scholar
  849. 849.
    Spina V, Rossi D. Molecular pathogenesis of splenic and nodal marginal zone lymphoma. Best practice & research. Clin Haematol. 2017;30:5–12.Google Scholar
  850. 850.
    Clipson A, Wang M, de Leval L, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29:1177–85.PubMedGoogle Scholar
  851. 851.
    Parry M, Rose-Zerilli MJ, Ljungstrom V, et al. Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing. Clin Cancer Res. 2015;21:4174–83.PubMedPubMedCentralGoogle Scholar
  852. 852.
    Campos-Martin Y, Martinez N, Martinez-Lopez A, et al. Clinical and diagnostic relevance of NOTCH2-and KLF2-mutations in splenic marginal zone lymphoma. Haematologica. 2017;102:e310–e2.PubMedPubMedCentralGoogle Scholar
  853. 853.
    Bouroncle BA, Wiseman BK, Doan CA. Leukemic reticuloendotheliosis. Blood. 1958;13:609–30.PubMedGoogle Scholar
  854. 854.
    Bouroncle BA. Leukemic reticuloendotheliosis (hairy cell leukemia). Blood. 1979;53:412–36.PubMedGoogle Scholar
  855. 855.
    Andritsos LA, Grever MR. Historical overview of hairy cell leukemia. Best practice & research. Clin Haematol. 2015;28:166–74.Google Scholar
  856. 856.
    Giri S, Shrestha R, Pathak R, Bhatt VR. Racial differences in the overall survival of hairy cell leukemia in the United States: a population-based analysis of the surveillance, epidemiology, and end results database. Clin Lymphoma Myeloma Leuk. 2015;15:484–8.PubMedGoogle Scholar
  857. 857.
    Quest GR, Johnston JB. Clinical features and diagnosis of hairy cell leukemia. Best practice & research. Clin Haematol. 2015;28:180–92.Google Scholar
  858. 858.
    Wierda WG, Byrd JC, Abramson JS, et al. Hairy cell leukemia, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:1414–27.Google Scholar
  859. 859.
    Troussard X, Cornet E. Hairy cell leukemia 2018: update on diagnosis, risk-stratification, and treatment. Am J Hematol. 2017;92:1382–90.PubMedPubMedCentralGoogle Scholar
  860. 860.
    Cortazar JM, DeAngelo DJ, Pinkus GS, Morgan EA. Morphological and immunophenotypical features of hairy cell leukaemia involving lymph nodes and extranodal tissues. Histopathology. 2017;71:112–24.PubMedGoogle Scholar
  861. 861.
    Miranda RN, Briggs RC, Kinney MC, Veno PA, Hammer RD, Cousar JB. Immunohistochemical detection of cyclin D1 using optimized conditions is highly specific for mantle cell lymphoma and hairy cell leukemia. Mod Pathol. 2000;13:1308–14.PubMedGoogle Scholar
  862. 862.
    Wang XJ, Kim A, Li S. Immunohistochemical analysis using a BRAF V600E mutation specific antibody is highly sensitive and specific for the diagnosis of hairy cell leukemia. Int J Clin Exp Pathol. 2014;7:4323–8.PubMedPubMedCentralGoogle Scholar
  863. 863.
    Uppal G, Ly V, Wang ZX, et al. The utility of BRAF V600E mutation-specific antibody VE1 for the diagnosis of hairy cell leukemia. Am J Clin Pathol. 2015;143:120–5.PubMedGoogle Scholar
  864. 864.
    Stetler-Stevenson M, Tembhare PR. Diagnosis of hairy cell leukemia by flow cytometry. Leuk Lymphoma. 2011;52(Suppl 2):11–3.PubMedGoogle Scholar
  865. 865.
    Pillai V, Pozdnyakova O, Charest K, Li B, Shahsafaei A, Dorfman DM. CD200 flow cytometric assessment and semiquantitative immunohistochemical staining distinguishes hairy cell leukemia from hairy cell leukemia-variant and other B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140:536–43.PubMedGoogle Scholar
  866. 866.
    Shao H, Calvo KR, Gronborg M, et al. Distinguishing hairy cell leukemia variant from hairy cell leukemia: development and validation of diagnostic criteria. Leuk Res. 2013;37:401–9.PubMedPubMedCentralGoogle Scholar
  867. 867.
    Tiacci E, Trifonov V, Schiavoni G, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364:2305–15.PubMedPubMedCentralGoogle Scholar
  868. 868.
    Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128:1918–27.PubMedGoogle Scholar
  869. 869.
    Dietrich S, Hullein J, Lee SC, et al. Recurrent CDKN1B (p27) mutations in hairy cell leukemia. Blood. 2015;126:1005–8.PubMedGoogle Scholar
  870. 870.
    Durham BH, Getta B, Dietrich S, et al. Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood. 2017;130:1644–8.PubMedPubMedCentralGoogle Scholar
  871. 871.
    Tiacci E, Schiavoni G, Martelli MP, et al. Constant activation of the RAF-MEK-ERK pathway as a diagnostic and therapeutic target in hairy cell leukemia. Haematologica. 2013;98:635–9.PubMedPubMedCentralGoogle Scholar
  872. 872.
    Tiacci E, Pettirossi V, Schiavoni G, Falini B. Genomics of hairy cell leukemia. J Clin Oncol. 2017;35:1002–10.PubMedPubMedCentralGoogle Scholar
  873. 873.
    Aziz KA, Till KJ, Zuzel M, Cawley JC. Involvement of CD44-hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood. 2000;96:3161–7.PubMedGoogle Scholar
  874. 874.
    Burthem J, Baker PK, Hunt JA, Cawley JC. Hairy cell interactions with extracellular matrix: expression of specific integrin receptors and their role in the cell’s response to specific adhesive proteins. Blood. 1994;84:873–82.PubMedGoogle Scholar
  875. 875.
    Caligaris-Cappio F, Bergui L, Tesio L, Corbascio G, Tousco F, Marchisio PC. Cytoskeleton organization is aberrantly rearranged in the cells of B chronic lymphocytic leukemia and hairy cell leukemia. Blood. 1986;67:233–9.PubMedGoogle Scholar
  876. 876.
    Sainati L, Matutes E, Mulligan S, et al. A variant form of hairy cell leukemia resistant to alpha-interferon: clinical and phenotypic characteristics of 17 patients. Blood. 1990;76:157–62.PubMedGoogle Scholar
  877. 877.
    Matutes E, Martinez-Trillos A, Campo E. Hairy cell leukaemia-variant: disease features and treatment. Best practice & research. Clin Haematol. 2015;28:253–63.Google Scholar
  878. 878.
    Hockley SL, Else M, Morilla A, et al. The prognostic impact of clinical and molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma. Br J Haematol. 2012;158:347–54.PubMedGoogle Scholar
  879. 879.
    Hockley SL, Morgan GJ, Leone PE, et al. High-resolution genomic profiling in hairy cell leukemia-variant compared with typical hairy cell leukemia. Leukemia. 2011;25:1189–92.PubMedGoogle Scholar
  880. 880.
    Arons E, Suntum T, Stetler-Stevenson M, Kreitman RJ. VH4-34+ hairy cell leukemia, a new variant with poor prognosis despite standard therapy. Blood. 2009;114:4687–95.PubMed