Advertisement

Conclusions, Challenges Encountered and Future Work

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa
Chapter

Abstract

The sun offers mankind virtually unlimited energy potential with photovoltaics being one of the energy-harnessing technologies. New understanding of semiconductor material issues, processing steps, graded bandgap device architectures and device physics paves the way to achieving high-energy conversion efficiency. Although the photovoltaic market is dominated by Si-based solar cells, CdTe-based solar cells provide competitiveness based on its economic viability and conversion efficiency. The use of electroplating as the semiconductor deposition technique further strengthens the exploration of science behind these devices and economic competitiveness of CdTe-based solar cells as demonstrated in this book. Graded bandgap solar cells provide a promising path to produce low-cost and high-efficiency, next-generation solar cell development.

Keywords

ZnS/CdS/CdTe CdTe-based Graded bandgap Post-growth treatment 

References

  1. 1.
    A.A. Ojo, I.M. Dharmadasa, Investigation of electronic quality of electrodeposited cadmium sulphide layers from thiourea precursor for use in large area electronics. Mater. Chem. Phys. 180, 14–28 (2016).  https://doi.org/10.1016/j.matchemphys.2016.05.006 CrossRefGoogle Scholar
  2. 2.
    H.I. Salim, O.I. Olusola, A.A. Ojo, K.A. Urasov, M.B. Dergacheva, I.M. Dharmadasa, Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells. J. Mater. Sci. Mater. Electron. 27, 6786–6799 (2016).  https://doi.org/10.1007/s10854-016-4629-8 CrossRefGoogle Scholar
  3. 3.
    A.A. Ojo, I.M. Dharmadasa, Analysis of electrodeposited CdTe thin films grown using cadmium chloride precursor for applications in solar cells. J. Mater. Sci. Mater. Electron. 28, 14110–14120 (2017).  https://doi.org/10.1007/s10854-017-7264-0 CrossRefGoogle Scholar
  4. 4.
    A.A. Ojo, I.M. Dharmadasa, Effect of gallium doping on the characteristic properties of polycrystalline cadmium telluride thin film. J. Electron. Mater. 46, 5127–5135 (2017).  https://doi.org/10.1007/s11664-017-5519-4 CrossRefGoogle Scholar
  5. 5.
    A.A. Ojo, I.M. Dharmadasa, The effect of fluorine doping on the characteristic behaviour of CdTe. J. Electron. Mater. 45, 5728–5738 (2016).  https://doi.org/10.1007/s11664-016-4786-9 CrossRefGoogle Scholar
  6. 6.
    A.A. Ojo, I.M. Dharmadasa, Electrodeposition of fluorine-doped cadmium telluride for application in photovoltaic device fabrication. Mater. Res. Innov. 19, 470–476 (2015).  https://doi.org/10.1080/14328917.2015.1109215 CrossRefGoogle Scholar
  7. 7.
    A.A. Ojo, I.M. Dharmadasa, Effect of in-situ fluorine doping on electroplated cadmium telluride thin films for photovoltaic device application, in 31st European Photovoltaic Solar Energy Conference and Exhibition, 2015, pp. 1249–1255.  https://doi.org/10.4229/EUPVSEC20152015-3DV.1.40.
  8. 8.
    I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, O.I. Olusola, H.I. Salim, M.L. Madugu, A.A. Ojo, Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2. J. Mater. Sci. Mater. Electron. 28, 2343–2352 (2017).  https://doi.org/10.1007/s10854-016-5802-9 CrossRefGoogle Scholar
  9. 9.
    A.A. Ojo, I.O. Olusola, I.M. Dharmadasa, Effect of the inclusion of gallium in normal cadmium chloride treatment on electrical properties of CdS/CdTe solar cell. Mater. Chem. Phys. 196, 229–236 (2017).  https://doi.org/10.1016/j.matchemphys.2017.04.053 CrossRefGoogle Scholar
  10. 10.
    A.A. Ojo, I.M. Dharmadasa, Optimisation of pH of cadmium chloride post-growth-treatment in processing CdS/CdTe based thin film solar cells. J. Mater. Sci. Mater. Electron. 28, 7231–7242 (2017).  https://doi.org/10.1007/s10854-017-6404-x CrossRefGoogle Scholar
  11. 11.
    A.A. Ojo, I.M. Dharmadasa, Progress in development of graded bandgap thin film solar cells with electroplated materials. J. Mater. Sci. Mater. Electron. 28, 6359–6365 (2017).  https://doi.org/10.1007/s10854-017-6366-z CrossRefGoogle Scholar
  12. 12.
    A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017).  https://doi.org/10.1007/s10854-016-5916-0 CrossRefGoogle Scholar
  13. 13.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016).  https://doi.org/10.1016/j.solener.2016.06.067 CrossRefGoogle Scholar
  14. 14.
    O.I. Olusola, M.L. Madugu, A.A. Ojo, I.M. Dharmadasa, Investigating the effect of GaCl3 incorporation into the usual CdCl2 treatment on CdTe-based solar cell device structures. Curr. Appl. Phys. 17, 279–289 (2017).  https://doi.org/10.1016/j.cap.2016.11.027 CrossRefGoogle Scholar
  15. 15.
    A.A. Ojo, I.M. Dharmadasa, Analysis of the electronic properties of all-electroplated ZnS, CdS and CdTe graded bandgap photovoltaic device configuration. Sol. Energy 158, 721–727 (2017).  https://doi.org/10.1016/j.solener.2017.10.042 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations