Advertisement

ZnS Deposition and Characterisation

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa
Chapter

Abstract

Zinc sulphide (ZnS) layers have been used as buffer layers in the solar cells described in this book, and this chapter provides an insight into the electrodeposition of ZnS layers. Electrodeposition of zinc sulphide (ZnS) was achieved from an electrolytic bath containing zinc sulphate monohydrate (ZnSO4·H2O) and ammonium thiosulphate ((NH4)2S2O3) in a two-electrode electroplating configuration. Cyclic voltammetric studies show that ZnS layers can be electroplated between 1350 and 1550 mV. The grown layers were characterised for their structural, optical, morphological and electronic properties using X-ray diffraction (XRD) and Raman spectroscopy, UV-visible spectrophotometry, scanning electron microscopy (SEM), photoelectrochemical (PEC) cell and DC conductivity measurements, respectively. The structural analyses show that crystalline ZnS can be deposited within a narrow cathodic deposition range between 1420 and 1430 mV. UV-visible spectrophotometry shows that the bandgap of both as-deposited and heat-treated ZnS films is in the range of ~(3.70 and 3.90) eV. The SEM shows small grains in the ZnS layer and the full coverage of the underlying substrate by the film. PEC results show that the electroplated ZnS layers grown below 1425 mV are p-type and above 1425 mV are n-type under both as-deposited and heat-treated condition. DC conductivity shows that the highest resistivity is at the inversion growth voltage (Vi) for the ZnS layers.

Keywords

p-type and n-type ZnS Amorphisation Thin films Electroplating 

References

  1. 1.
    T. Nakada, M. Mizutani, 18% Efficiency Cd-free Cu(In, Ga)Se 2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41, L165 (2002). http://stacks.iop.org/1347-4065/41/i=2B/a=L165 CrossRefGoogle Scholar
  2. 2.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).  https://doi.org/10.1002/0470068329 CrossRefGoogle Scholar
  3. 3.
    J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993).  https://doi.org/10.1063/1.109629 CrossRefGoogle Scholar
  4. 4.
    T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, 13.4% Efficient thin-film CdS/CdTe solar cells. J. Appl. Phys. 70, 7608 (1991).  https://doi.org/10.1063/1.349717. CrossRefGoogle Scholar
  5. 5.
    J.E. Granata, J.R. Sites, in Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. 1996. Effect of CdS thickness on CdS/CdTe quantum efficiency (2000), pp. 853–856.  https://doi.org/10.1109/PVSC.1996.564262 CrossRefGoogle Scholar
  6. 6.
    A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, F. Karg, Highly efficient Cu(Ga,In)(S,Se)2 thin film solar cells with zinc-compound buffer layers. Thin Solid Films. 431–432, 335–339 (2003).  https://doi.org/10.1016/S0040-6090(03)00155-X CrossRefGoogle Scholar
  7. 7.
    A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017).  https://doi.org/10.1007/s10854-016-5916-0 CrossRefGoogle Scholar
  8. 8.
    J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, J. Zhao, Au-catalyst growth and photoluminescence of zinc-blende and wurtzite ZnS nanobelts via chemical vapor deposition. J. Lumin. 122–123, 172–175 (2007).  https://doi.org/10.1016/j.jlumin.2006.01.074 CrossRefGoogle Scholar
  9. 9.
    A.N. Yazici, M. Öztaş, M. Bedır, Effect of sample producing conditions on the thermoluminescence properties of ZnS thin films developed by spray pyrolysis method. J. Lumin. 104, 115–122 (2003).  https://doi.org/10.1016/S0022-2313(02)00686-5 CrossRefGoogle Scholar
  10. 10.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Electrodeposited ZnS precursor layer with improved electrooptical properties for efficient Cu2ZnSnS4 thin-film solar cells. J. Electron. Mater. 44, 3380–3387 (2015).  https://doi.org/10.1007/s11664-015-3849-7 CrossRefGoogle Scholar
  11. 11.
    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)Google Scholar
  12. 12.
    S. Tec-Yam, J. Rojas, V. Rejón, A.I. Oliva, High quality antireflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys. 136, 386–393 (2012).  https://doi.org/10.1016/j.matchemphys.2012.06.063. CrossRefGoogle Scholar
  13. 13.
    G.L. Agawane, S.W. Shin, A.V. Moholkar, K.V. Gurav, J.H. Yun, J.Y. Lee, J.H. Kim, Non-toxic complexing agent Tri-sodium citrate’s effect on chemical bath deposited ZnS thin films and its growth mechanism. J. Alloys Compd. 535, 53–61 (2012).  https://doi.org/10.1016/j.jallcom.2012.04.073 CrossRefGoogle Scholar
  14. 14.
    B.W. Sanders, A.H. Kitai, The electrodeposition of thin film zinc sulphide from thiosulphate solution. J. Cryst. Growth. 100, 405–410 (1990).  https://doi.org/10.1016/0022-0248(90)90238-G CrossRefGoogle Scholar
  15. 15.
    O.K. Echendu, I.M. Dharmadasa, Effects of thickness and annealing on optoelectronic properties of electrodeposited ZnS thin films for photonic device applications. J. Electron. Mater. 43, 791–801 (2013).  https://doi.org/10.1007/s11664-013-2943-y CrossRefGoogle Scholar
  16. 16.
    M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, Intrinsic doping in electrodeposited ZnS thin films for application in large-area optoelectronic devices. J. Electron. Mater. 45, 2710–2717 (2016).  https://doi.org/10.1007/s11664-015-4310-7 CrossRefGoogle Scholar
  17. 17.
    A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation. CrystEngComm. 16, 4120 (2014).  https://doi.org/10.1039/c3ce42578a CrossRefGoogle Scholar
  18. 18.
    Y. Ebisuzaki, M. Nicol, Raman spectrum of hexagonal zinc sulfide at high pressures. J. Phys. Chem. Solids. 33, 763–766 (1972).  https://doi.org/10.1016/0022-3697(72)90088-1 CrossRefGoogle Scholar
  19. 19.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981).  https://doi.org/10.1016/0038-1098(81)90337-9 CrossRefGoogle Scholar
  20. 20.
    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986).  https://doi.org/10.1016/0038-1098(86)90513-2 CrossRefGoogle Scholar
  21. 21.
    A.B. Bhalerao, C.D. Lokhande, B.G. Wagh, Photoelectrochemical cell based on electrodeposited nanofibrous ZnS thin film. IEEE Trans. Nanotechnol. 12, 996–1001 (2013).  https://doi.org/10.1109/TNANO.2013.2272469 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations