Advertisement

Techniques Utilised in Materials Growth and Materials and Device Characterisation

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa
Chapter

Abstract

Further to the semiconductor material and electronic properties discussed in Chap.  2, the evaluation of semiconductor materials can be examined for structural, morphological, compositional, optical and electronic properties to facilitate research towards optimisation. This chapter describes the physics and the basic functionality of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and photoelectrochemical (PEC) cell measurement equipment. Current-voltage (I-V) and capacitance-voltage (C-V) techniques were utilised for the evaluation to facilitate research towards solar cell device performance in order to understand the factors affecting the performance of device materials.

Keywords

Material characterisation Device characterisation Structural property Morphological property Optical property Compositional property Electrical property 

References

  1. 1.
    K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004).  https://doi.org/10.1002/pip.541 CrossRefGoogle Scholar
  2. 2.
    R.A. Street, Thin-film transistors. Adv. Mater. 21, 2007–2022 (2009).  https://doi.org/10.1002/adma.200803211 CrossRefGoogle Scholar
  3. 3.
    W. Kern, K.K. Schuegraf, in Handb. Thin Film Depos. Process. Tech. Deposition technologies and applications (Elsevier, New York, 2001), pp. 11–43.  https://doi.org/10.1016/B978-081551442-8.50006-7 CrossRefGoogle Scholar
  4. 4.
    D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005).  https://doi.org/10.1016/j.tsf.2005.01.032 CrossRefGoogle Scholar
  5. 5.
    A.A. Ojo, I.M. Dharmadasa, The effect of fluorine doping on the characteristic behaviour of CdTe. J. Electron. Mater. 45, 5728–5738 (2016).  https://doi.org/10.1007/s11664-016-4786-9 CrossRefGoogle Scholar
  6. 6.
    J.M. Woodcock, A.K. Turner, M.E. Ozsan, J.G. Summers, in Conf. Rec. Twenty-Second IEEE Photovolt. Spec. Conf.—1991. Thin film solar cells based on electrodeposited CdTe (IEEE, 1991), pp. 842–847.  https://doi.org/10.1109/PVSC.1991.169328
  7. 7.
    D. Cunningham, M. Rubcich, D. Skinner, Cadmium telluride PV module manufacturing at BP Solar. Prog. Photovolt. Res. Appl. 10, 159–168 (2002).  https://doi.org/10.1002/pip.417 CrossRefGoogle Scholar
  8. 8.
    I.M. Dharmadasa, J. Haigh, Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. J. Electrochem. Soc. 153, G47 (2006).  https://doi.org/10.1149/1.2128120 CrossRefGoogle Scholar
  9. 9.
    A.A. Ojo, I.M. Dharmadasa, Progress in development of graded bandgap thin film solar cells with electroplated materials. J. Mater. Sci. Mater. Electron. 28, 6359–6365 (2017).  https://doi.org/10.1007/s10854-017-6366-z CrossRefGoogle Scholar
  10. 10.
    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)Google Scholar
  11. 11.
    A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017).  https://doi.org/10.1007/s10854-016-5916-0 CrossRefGoogle Scholar
  12. 12.
    M.P.R. Panicker, M. Knaster, F.A. Kroger, Cathodic deposition of CdTe from aqueous electrolytes. J. Electrochem. Soc. 125, 566 (1978).  https://doi.org/10.1149/1.2131499 CrossRefGoogle Scholar
  13. 13.
    J. McHardy, F. Ludwig, Electrochemistry of semiconductors and electronics: processes and devices (Noyes Publications, Park Ridge, 1992). https://books.google.co.uk/books?id=cSEt5W3vmdIC Google Scholar
  14. 14.
    A.A. Ojo, I.M. Dharmadasa, 15.3% Efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016).  https://doi.org/10.1016/j.solener.2016.06.067 CrossRefGoogle Scholar
  15. 15.
    I.M. Dharmadasa, P. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M.B. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings. 4, 380–415 (2014).  https://doi.org/10.3390/coatings4030380 CrossRefGoogle Scholar
  16. 16.
    J. Pandey, Solar cell harvesting: green renewable technology of future introduction. Int. J. Adv. Res. Eng. Appl. Sci. 4, 93 (2015). ISSN: 2278–6252Google Scholar
  17. 17.
    S. Dennison, Dopant and impurity effects in electrodeposited CdS/CdTe thin films for photovoltaic applications. J. Mater. Chem. 4, 41 (1994).  https://doi.org/10.1039/jm9940400041 CrossRefGoogle Scholar
  18. 18.
  19. 19.
    E.A. Meulenkamp, L.M. Peter, Mechanistic aspects of the electrodeposition of stoichiometric CdTe on semiconductor substrates. J. Chem. Soc. Trans. 92, 4077–4082 (1996).  https://doi.org/10.1039/ft9969204077 CrossRefGoogle Scholar
  20. 20.
    A.Y. Shenouda, E.S.M. El Sayed, Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Eng. J. 6, 341–346 (2014).  https://doi.org/10.1016/j.asej.2014.07.010 CrossRefGoogle Scholar
  21. 21.
    H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne, I.M. Dharmadasa, Effect of stirring rate of electrolyte on properties of electrodeposited CdS layers. J. Mater. Sci. Mater. Electron. 27, 5415–5421 (2016).  https://doi.org/10.1007/s10854-016-4443-3 CrossRefGoogle Scholar
  22. 22.
    P.T. Kissinger, W.R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60, 702 (1983).  https://doi.org/10.1021/ed060p702 CrossRefGoogle Scholar
  23. 23.
    C.W. Siders, Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).  https://doi.org/10.1126/science.286.5443.1340 CrossRefGoogle Scholar
  24. 24.
    A. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012).  https://doi.org/10.4236/wjnse.2012.23020. CrossRefGoogle Scholar
  25. 25.
    H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. Mcainsh, N. Stone, F.L. Martin, Using Raman spectroscopy to characterise biological materials. Nat. Protoc. 11, 664–687 (2016).  https://doi.org/10.1038/nprot.2016.036 CrossRefGoogle Scholar
  26. 26.
    A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015).  https://doi.org/10.1039/C5RA13043C CrossRefGoogle Scholar
  27. 27.
    W.A. Mackie, G.G. Magera, Defined emission area and custom thermal electron sources. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 06F601 (2011).  https://doi.org/10.1116/1.3656350 CrossRefGoogle Scholar
  28. 28.
    D.N. Leonard, G.W. Chandler, S. Seraphin, in Charact. Mater.. Scanning electron microscopy (Wiley, Hoboken, 2012), pp. 1721–1735.  https://doi.org/10.1002/0471266965.com081.pub2. CrossRefGoogle Scholar
  29. 29.
    D.A. Moncrieff, P.R. Barker, Secondary electron emission in the scanning electron microscope. Scanning 1, 195–197 (1978).  https://doi.org/10.1002/sca.4950010307 CrossRefGoogle Scholar
  30. 30.
    K. Kanaya, S. Okayama, Penetration and energy-loss theory of electrons in solid targets. J. Phys. D. Appl. Phys. 5, 308 (1972).  https://doi.org/10.1088/0022-3727/5/1/308 CrossRefGoogle Scholar
  31. 31.
    P.J. Statham, Limitations to accuracy in extracting characteristic line intensities from x-ray spectra. J. Res. Natl. Inst. Stand. Technol. 107, 531 (2002).  https://doi.org/10.6028/jres.107.045 CrossRefGoogle Scholar
  32. 32.
    H.C. Allen, T. Brauers, B.J. Finlayson-Pitts, Illustration of deviations in the Beer-Lambert law in an instrumental analysis laboratory: measuring atmospheric pollutants by differential optical absorption spectrometry. J. Chem. Educ. 74, 1459 (1997).  https://doi.org/10.1021/ed074p1459 CrossRefGoogle Scholar
  33. 33.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).  https://doi.org/10.1016/0025-5408(68)90023-8 CrossRefGoogle Scholar
  34. 34.
    J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011).  https://doi.org/10.1016/j.solmat.2010.10.027. CrossRefGoogle Scholar
  35. 35.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006).  https://doi.org/10.1016/j.pcrysgrow.2006.09.001 CrossRefGoogle Scholar
  36. 36.
    D.T.F. Marple, Optical absorption edge in CdTe: experimental. Phys. Rev. 150, 728–734 (1966).  https://doi.org/10.1103/PhysRev.150.728 CrossRefGoogle Scholar
  37. 37.
    V.Y. Roshko, L. a Kosyachenko, E.V. Grushko, Theoretical analysis of optical losses in CdS/CdTe solar cells. Acta Phys. Pol. A. 120, 954–956 (2011). http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z5p39.pdf CrossRefGoogle Scholar
  38. 38.
    H.A. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 113, 093105 (2013).  https://doi.org/10.1063/1.4794201 CrossRefGoogle Scholar
  39. 39.
    H.A. Mohamed, Influence of the optical and recombination losses on the efficiency of CdS/CdTe solar cell at ultrathin absorber layer. Can. J. Phys. 92, 1350–1355 (2014).  https://doi.org/10.1139/cjp-2013-0477 CrossRefGoogle Scholar
  40. 40.
    J.E. Granata, J.R. Sites, in Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf.. Effect of CdS thickness on CdS/CdTe quantum efficiency, vol 2000 (1996), pp. 853–856.  https://doi.org/10.1109/PVSC.1996.564262 CrossRefGoogle Scholar
  41. 41.
    J.S. Lee, Y.K. Jun, H.B. Im, Effects of CdS film thickness on the photovoltaic properties of sintered CdS / CdTe solar cells. J. Electrochem. Soc. 134, 248–251 (1987).  https://doi.org/10.1149/1.2100417. CrossRefGoogle Scholar
  42. 42.
    P.M. Kaminski, F. Lisco, J.M. Walls, Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells. IEEE J. Photovolt. 4, 452–456 (2014).  https://doi.org/10.1109/JPHOTOV.2013.2284064 CrossRefGoogle Scholar
  43. 43.
    K. Rajeshwar, in Encycl. Electrochem.. Fundamentals of semiconductor electrochemistry and photoelectrochemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007), pp. 1–51.  https://doi.org/10.1002/9783527610426.bard060001 CrossRefGoogle Scholar
  44. 44.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).  https://doi.org/10.1002/0470068329 CrossRefGoogle Scholar
  45. 45.
    M. Chegaar, A. Hamzaoui, A. Namoda, P. Petit, M. Aillerie, A. Herguth, Effect of illumination intensity on solar cells parameters. Energy Procedia 36, 722–729 (2013).  https://doi.org/10.1016/j.egypro.2013.07.084 CrossRefGoogle Scholar
  46. 46.
    T. Soga, Nanostructured materials for solar energy conversion, vol 614 (Elsvier Science, Philadelphia, 2006). https://www.elsevier.com/books/nanostructured-materials-for-solar-energy-conversion/soga/978-0-444-52844-5 Google Scholar
  47. 47.
    M. Dadu, A. Kapoor, K.N. Tripathi, Effect of operating current dependent series resistance on the fill factor of a solar cell. Sol. Energy Mater. Sol. Cells 71, 213–218 (2002).  https://doi.org/10.1016/S0927-0248(01)00059-9 CrossRefGoogle Scholar
  48. 48.
    E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I Solid State Electron Devices. 129, 1 (1982).  https://doi.org/10.1049/ip-i-1.1982.0001 CrossRefGoogle Scholar
  49. 49.
    J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005).  https://doi.org/10.1016/j.tsf.2004.11.006 CrossRefGoogle Scholar
  50. 50.
    S. Geyer, V.J. Porter, J.E. Halpert, T.S. Mentzel, M.A. Kastner, M.G. Bawendi, Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 82 (2010).  https://doi.org/10.1103/PhysRevB.82.155201
  51. 51.
    O. Madelung, U. Rössler, M. Schulz (eds.), in II-VI I-VII Compd. Semimagn. Compd. Cadmium telluride (CdTe) effective masses (Springer, Berlin, 1999), pp. 1–2.  https://doi.org/10.1007/10681719_625
  52. 52.
    G.G. Roberts, M.C. Petty, I.M. Dharmadasa, Photovoltaic properties of cadmium-telluride/Langmuir-film solar cells. IEEE Proc. I Solid State Electron Devices. 128, 197 (1981).  https://doi.org/10.1049/ip-i-1.1981.0049 CrossRefGoogle Scholar
  53. 53.
    T.Y. Chang, C.L. Chang, H.Y. Lee, P.T. Lee, A metal-insulator-semiconductor solar cell with high open-circuit voltage using a stacking structure. IEEE Electron Device Lett. 31, 1419–1421 (2010).  https://doi.org/10.1109/LED.2010.2073437 CrossRefGoogle Scholar
  54. 54.
    S. Chander, A. Purohit, A. Sharma, S.P. Nehra, M.S. Dhaka, Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Reports. 1, 175–180 (2015).  https://doi.org/10.1016/j.egyr.2015.09.001 CrossRefGoogle Scholar
  55. 55.
    W.L. Liu, Y.L. Chen, A.A. Balandin, K.L. Wang, Capacitance–voltage spectroscopy of trapping states in GaN/AlGaN heterostructure field-effect transistors. J. Nanoelectron. Optoelectron. 1, 258–263 (2006).  https://doi.org/10.1166/jno.2006.212. CrossRefGoogle Scholar
  56. 56.
    S.W. Lin, J. Du, C. Balocco, Q.P. Wang, A.M. Song, Effects of bias cooling on charge states in heterostructures embedding self-assembled quantum dots. Phys. Rev. B 78, 115314 (2008).  https://doi.org/10.1103/PhysRevB.78.115314 CrossRefGoogle Scholar
  57. 57.
    I. Strzalkowski, S. Joshi, C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28, 350–352 (1976).  https://doi.org/10.1063/1.88755 CrossRefGoogle Scholar
  58. 58.
    D. Neamen, Semiconductor physics and devices. Mater. Today 9, 57 (2006).  https://doi.org/10.1016/S1369-7021(06)71498-5 CrossRefGoogle Scholar
  59. 59.
    N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells. Thin Solid Films 437, 10–17 (2003).  https://doi.org/10.1016/S0040-6090(03)00671-0 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations