Advertisement

Photovoltaic Solar Cells: Materials, Concepts and Devices

  • A. A. Ojo
  • W. M. Cranton
  • I. M. Dharmadasa
Chapter

Abstract

This chapter describes the characteristic structural and electrical properties of solid-state materials with emphasis on semiconductors, surfaces and interfaces, junctions, charge carrier transport mechanisms, electrical contacts and devices. An overview of semiconductor growth techniques is also included in this chapter for readers to familiarise with some of the terminologies that describe semiconductor/semiconductor (SS), metal/semiconductor (MS) or metal/insulator/semiconductor (MIS) structures. This chapter also includes a description of the concept of bandgap grading and next-generation solar cells.

Keywords

Solid-state materials Semiconductor properties Photovoltaics Electrical contacts Shockley-Queisser theory Solar cells 

References

  1. 1.
    J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2003).  https://doi.org/10.1017/CBO9780511805745 CrossRefGoogle Scholar
  2. 2.
    I.A. Sukhoivanov, I.V. Guryev, Photonic Crystals (Springer, Berlin, 2009).  https://doi.org/10.1007/978-3-642-02646-1 CrossRefGoogle Scholar
  3. 3.
    D. Neamen, Semiconductor physics and devices. Mater. Today. 9, 57 (2006).  https://doi.org/10.1016/S1369-7021(06)71498-5 CrossRefGoogle Scholar
  4. 4.
    I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)Google Scholar
  5. 5.
    W.H. Strehlow, E.L. Cook, Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data. 2, 163–200 (1973).  https://doi.org/10.1063/1.3253115 CrossRefGoogle Scholar
  6. 6.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006).  https://doi.org/10.1002/0470068329 CrossRefGoogle Scholar
  7. 7.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy. 136, 10–14 (2016).  https://doi.org/10.1016/j.solener.2016.06.067 CrossRefGoogle Scholar
  8. 8.
    S.D. Sathaye, A.P.B. Sinha, Studies on thin films of cadmium sulphide prepared by a chemical deposition method. Thin Solid Films 37, 15–23 (1976).  https://doi.org/10.1016/0040-6090(76)90531-9 CrossRefGoogle Scholar
  9. 9.
    I.M. Dharmadasa, J.M. Thornton, R.H. Williams, Effects of surface treatments on Schottky barrier formation at metal/n-type CdTe contacts. Appl. Phys. Lett. 54, 137 (1989).  https://doi.org/10.1063/1.101208 CrossRefGoogle Scholar
  10. 10.
    I.M. Dharmadasa, J.D. Bunning, A.P. Samantilleke, T. Shen, Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and lifetime of thin film solar cells. Sol. Energy Mater. Sol. Cells. 86, 373–384 (2005).  https://doi.org/10.1016/j.solmat.2004.08.009 CrossRefGoogle Scholar
  11. 11.
    T.L. Chu, S.S. Chu, C. Ferekides, J. Britt, C.Q. Wu, Thin-film junctions of cadmium telluride by metalorganic chemical vapor deposition. J. Appl. Phys. 71, 3870–3876 (1992).  https://doi.org/10.1063/1.350852 CrossRefGoogle Scholar
  12. 12.
    L. Huang, Y. Zhao, D. Cai, Homojunction and heterojunction based on CdTe polycrystalline thin films. Mater. Lett. 63, 2082–2084 (2009).  https://doi.org/10.1016/j.matlet.2009.06.028 CrossRefGoogle Scholar
  13. 13.
    B.E. McCandless, J.R. Sites, in Handb. Photovolt. Sci. Eng. Cadmium telluride solar cells (Wiley, Chichester, 2011), pp. 600–641.  https://doi.org/10.1002/9780470974704.ch14. CrossRefGoogle Scholar
  14. 14.
    M.P. Mikhailova, A.N. Titkov, Type II heterojunctions in the GaInAsSb/GaSb system. Semicond. Sci. Technol. 9, 1279–1295 (1994).  https://doi.org/10.1088/0268-1242/9/7/001. CrossRefGoogle Scholar
  15. 15.
    P. Hofmann, Solid State Physics: An Introduction, 2nd edn. (Wiley-VCH, Berlin, 2015)zbMATHGoogle Scholar
  16. 16.
    P.V. Meyers, Advances in CdTe n-i-p photovoltaics. Sol. Cells. 27, 91–98 (1989).  https://doi.org/10.1016/0379-6787(89)90019-7 CrossRefGoogle Scholar
  17. 17.
    E.H. Rhoderick, The physics of Schottky barriers? Rev. Phys. Technol. 1, 81–95 (1970).  https://doi.org/10.1088/0034-6683/1/2/302 CrossRefGoogle Scholar
  18. 18.
    W.G. Oldham, A.G. Milnes, n-n Semiconductor heterojunctions. Solid. State. Electron. 6, 121–132 (1963).  https://doi.org/10.1016/0038-1101(63)90005-4 CrossRefGoogle Scholar
  19. 19.
    E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I Solid State Electron Devices. 129, 1 (1982).  https://doi.org/10.1049/ip-i-1.1982.0001 CrossRefGoogle Scholar
  20. 20.
    J.P. Ponpon, A review of ohmic and rectifying contacts on cadmium telluride. Solid. State. Electron. 28, 689–706 (1985).  https://doi.org/10.1016/0038-1101(85)90019-X CrossRefGoogle Scholar
  21. 21.
    I.M. Dharmadasa, Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to barrier contacts to CdTe. Prog. Cryst. Growth Charact. Mater. 36, 249–290 (1998).  https://doi.org/10.1016/S0960-8974(98)00010-2 CrossRefGoogle Scholar
  22. 22.
    J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947).  https://doi.org/10.1103/PhysRev.71.717 CrossRefGoogle Scholar
  23. 23.
    J. Singh, Semiconductor Devices: Basic Principles (Wiley, New York, 2001)Google Scholar
  24. 24.
    W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, P. Chye, Unified mechanism for Schottky-barrier formation and III-V oxide interface states. Phys. Rev. Lett. 44, 420–423 (1980).  https://doi.org/10.1103/PhysRevLett.44.420 CrossRefGoogle Scholar
  25. 25.
    R. Schlaf, R. Hinogami, M. Fujitani, S. Yae, Y. Nakato, Fermi level pinning on HF etched silicon surfaces investigated by photoelectron spectroscopy. J. Vac. Sci. Technol. A 17, 164 (1999).  https://doi.org/10.1116/1.581568 CrossRefGoogle Scholar
  26. 26.
    I.M. Dharmadasa, O. Elsherif, G.J. Tolan, Solar cells active in complete darkness. J. Phys. Conf. Ser. 286, 12041 (2011).  https://doi.org/10.1088/1742-6596/286/1/012041 CrossRefGoogle Scholar
  27. 27.
    H.J. Queisser, Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998).  https://doi.org/10.1126/science.281.5379.945 CrossRefGoogle Scholar
  28. 28.
    R.B. Godfrey, M.A. Green, Enhancement of MIS solar-cell “efficiency” by peripheral collection. Appl. Phys. Lett. 31, 705–707 (1977).  https://doi.org/10.1063/1.89487 CrossRefGoogle Scholar
  29. 29.
    W.A. Nevin, G.A. Chamberlain, Effect of oxide thickness on the properties of metal-insulator-organic semiconductor photovoltaic cells. IEEE Trans. Electron Devices. 40, 75–81 (1993).  https://doi.org/10.1109/16.249427 CrossRefGoogle Scholar
  30. 30.
    M.A. Green, Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017).  https://doi.org/10.1002/pip.2876 CrossRefGoogle Scholar
  31. 31.
    V.M. Fthenakis, Life cycle impact analysis of cadmium in CdTe PV production. Renew. Sustain. Energy Rev. 8, 303–334 (2004).  https://doi.org/10.1016/j.rser.2003.12.001 CrossRefGoogle Scholar
  32. 32.
    B.M. Basol, High-efficiency electroplated heterojunction solar cell. J. Appl. Phys. 55, 601–603 (1984).  https://doi.org/10.1063/1.333073 CrossRefGoogle Scholar
  33. 33.
    J. Nelson, Polymer:fullerene bulk heterojunction solar cells. Mater. Today. 14, 462–470 (2011).  https://doi.org/10.1016/S1369-7021(11)70210-3 CrossRefGoogle Scholar
  34. 34.
    J. Nelson, Organic photovoltaic films. Curr. Opin. Solid State Mater. Sci. 6, 87–95 (2002).  https://doi.org/10.1016/S1359-0286(02)00006-2 CrossRefGoogle Scholar
  35. 35.
    S. Gunes, N.S. Sariciftci, Hybrid solar cells. Inorganica Chim. Acta. 361, 581–588 (2008).  https://doi.org/10.1016/j.ica.2007.06.042 CrossRefGoogle Scholar
  36. 36.
    M. Wright, A. Uddin, Organic-inorganic hybrid solar cells: a comparative review. Sol. Energy Mater. Sol. Cells. 107, 87–111 (2012).  https://doi.org/10.1016/j.solmat.2012.07.006 CrossRefGoogle Scholar
  37. 37.
    W. Xu, F. Tan, X. Liu, W. Zhang, S. Qu, Z. Wang, Z. Wang, Efficient organic/inorganic hybrid solar cell integrating polymer nanowires and inorganic nanotetrapods. Nanoscale Res. Lett. 12, 11 (2017).  https://doi.org/10.1186/s11671-016-1795-9 CrossRefGoogle Scholar
  38. 38.
    P.-L. Ong, I.A. Levitsky, Organic/IV, III-V semiconductor hybrid solar cells. Energies. 3, 313–334 (2010).  https://doi.org/10.3390/en3030313 CrossRefGoogle Scholar
  39. 39.
    NREL efficiency chart. (n.d.), https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 19 June 2017
  40. 40.
    I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells. 85, 293–300 (2005).  https://doi.org/10.1016/j.solmat.2004.08.008 CrossRefGoogle Scholar
  41. 41.
    O. Ergen, S.M. Gilbert, T. Pham, S.J. Turner, M.T.Z. Tan, M.A. Worsley, A. Zettl, Graded bandgap perovskite solar cells. Nat. Mater. 16, 522–525 (2016).  https://doi.org/10.1038/nmat4795 CrossRefGoogle Scholar
  42. 42.
    I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials. Energies. 8, 5440–5458 (2015).  https://doi.org/10.3390/en8065440 CrossRefGoogle Scholar
  43. 43.
    J. Tauc, Generation of an emf in semiconductors with nonequilibrium current carrier concentrations. Rev. Mod. Phys. 29, 308–324 (1957).  https://doi.org/10.1103/RevModPhys.29.308 CrossRefGoogle Scholar
  44. 44.
    M. Wolf, Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth’s surface operation. Proc. IRE. 48, 1246–1263 (1960).  https://doi.org/10.1109/JRPROC.1960.287647 CrossRefGoogle Scholar
  45. 45.
    P.R. Emtage, Electrical conduction and the photovoltaic effect in semiconductors with position-dependent band gaps. J. Appl. Phys. 33, 1950–1960 (1962).  https://doi.org/10.1063/1.1728874 CrossRefGoogle Scholar
  46. 46.
    M. Konagai, K. Takahashi, Graded-band-gap pGa1-xAlxAs-nGaAs heterojunction solar cells. J. Appl. Phys. 46, 3542–3546 (1975).  https://doi.org/10.1063/1.322083 CrossRefGoogle Scholar
  47. 47.
    H.J. Hovel, J.M. Woodall, Ga[sub 1−x]Al[sub x]As-GaAs P-P-N heterojunction solar cells. J. Electrochem. Soc. 120, 1246 (1973).  https://doi.org/10.1149/1.2403671 CrossRefGoogle Scholar
  48. 48.
    I.M. Dharmadasa, A.P. Samantilleke, N.B. Chaure, J. Young, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond. Sci. Technol. 17, 1238–1248 (2002).  https://doi.org/10.1088/0268-1242/17/12/306 CrossRefGoogle Scholar
  49. 49.
    I. Dharmadasa, J. Roberts, G. Hill, Third generation multi-layer graded band gap solar cells for achieving high conversion efficiencies—II: experimental results. Sol. Energy Mater. Sol. Cells. 88, 413–422 (2005).  https://doi.org/10.1016/j.solmat.2005.05.008 CrossRefGoogle Scholar
  50. 50.
    A.S. Brown, M.A. Green, Impurity photovoltaic effect: fundamental energy conversion efficiency limits. J. Appl. Phys. 92, 1329–1336 (2002).  https://doi.org/10.1063/1.1492016 CrossRefGoogle Scholar
  51. 51.
    K.W.J. Barnham, G. Duggan, A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490–3493 (1990).  https://doi.org/10.1063/1.345339 CrossRefGoogle Scholar
  52. 52.
    T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668 (2002)CrossRefGoogle Scholar
  53. 53.
    Y.Y. Lee, W.J. Ho, Y.T. Chen, Performance of plasmonic silicon solar cells using indium nanoparticles deposited on a patterned TiO2 matrix. Thin Solid Films. 570, 194–199 (2014).  https://doi.org/10.1016/j.tsf.2014.05.022 CrossRefGoogle Scholar
  54. 54.
    Y. Takeda, T. Motohiro, Highly efficient solar cells using hot carriers generated by two-step excitation. Sol. Energy Mater. Sol. Cells. 95, 2638–2644 (2011).  https://doi.org/10.1016/j.solmat.2011.05.023 CrossRefGoogle Scholar
  55. 55.
    J.F. Geisz, D.J. Friedman, J.S. Ward, A. Duda, W.J. Olavarria, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, K.M. Jones, 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 123505 (2008).  https://doi.org/10.1063/1.2988497 CrossRefGoogle Scholar
  56. 56.
    A.B.F. Martinson, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A. 113, 4015–4021 (2009).  https://doi.org/10.1021/jp810406q CrossRefGoogle Scholar
  57. 57.
    T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology. 19, 295203 (2008). http://stacks.iop.org/0957-4484/19/i=29/a=295203 CrossRefGoogle Scholar
  58. 58.
    F.V. Wald, Applications of CdTe. A review. Rev. Phys. Appliquée. 12, 277–290 (1977).  https://doi.org/10.1051/rphysap:01977001202027700 CrossRefGoogle Scholar
  59. 59.
    R. Frerichs, The photo-conductivity of “incomplete phosphors”. Phys. Rev. 72, 594–601 (1947).  https://doi.org/10.1103/PhysRev.72.594 CrossRefGoogle Scholar
  60. 60.
    J.J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 27, 777–784 (1956).  https://doi.org/10.1063/1.1722483 CrossRefGoogle Scholar
  61. 61.
    A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2010).  https://doi.org/10.1002/9780470974704 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
  • W. M. Cranton
    • 1
  • I. M. Dharmadasa
    • 1
  1. 1.Sheffield Hallam UniversitySheffieldUK

Personalised recommendations