Advertisement

Recognizing Complex Behavior Emerging from Chaos in Cellular Automata

  • Gabriela M. González
  • Genaro J. Martínez
  • M. A. Aziz Alaoui
  • Fangyue Chen
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In this research, we explain and show how a chaotic system displays non-trivial behavior as a complex system. This result is reached modifying the chaotic system using a memory function, which leads to a new system with elements of the original function which are not evident in a first step. We proof that this phenomenology can be apprehended selecting a typical chaotic function in the domain of elementary cellular automata to discover complex dynamics. By numerical simulations, we demonstrate how a number of gliders emerge in this automaton and how some controlled subsystems can be designed within this complex system.

Keywords

Complex dynamics Chaos Emergence Gliders Glider guns Memory 

References

  1. 1.
    Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London (1994)zbMATHGoogle Scholar
  2. 2.
    Adamatzky, A. (ed.): Collision-Based Computing. Springer, London (2002)zbMATHGoogle Scholar
  3. 3.
    Adamatzky, A., Martínez, G.J.: On generative morphological diversity of elementary cellular automata. Kybernetes 39(1), 72–82 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aziz-Alaoui, M., Bertelle, C.: From System Complexity to Emergent Properties. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, New York (1997)zbMATHGoogle Scholar
  6. 6.
    Boccara, N.: Modeling Complex Systems. Springer, New York (2003)zbMATHGoogle Scholar
  7. 7.
    Chen, B., Chen, F., Martínez, G.J.: Glider collisions in hybrid cellular automaton with memory rule (43,74). Int. J. Bifurc. Chaos 27(6) (2017).  https://doi.org/10.1142/S0218127417500821
  8. 8.
    Chen, G., Dong, X.: From Chaos to Order. In: World Scientific Series on Nonlinear Science, Series A, vol. 24 (1998)Google Scholar
  9. 9.
    Culik II, K., Yu, S.: Undecidability of CA classification schemes. Complex Syst. 2(2), 177–190 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  11. 11.
    Martínez, G.J., Adamatzky, A., Sanz, R.A., Mora, J.C.S.T.: Complex dynamic emerging in rule 30 with majority memory a new approach. Complex Syst. 18(3), 345–365 (2010)Google Scholar
  12. 12.
    Martínez, G.J., Adamatzky, A., Sanz, R.A.: Designing complex dynamics with memory. Int. J. Bifurc. Chaos 23(10), 1330035–131 (2013)CrossRefGoogle Scholar
  13. 13.
    Martínez, G.J., Adamatzky, A., Chen, B., Chen, F., Mora, J.C.S.T.: Simple networks on complex cellular automata: from de Bruijn diagrams to jump-graphs. In: Zelinka, I., Chen, G. (eds.) Swarm Dynamics as a Complex Network, pp. 241–264. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  14. 14.
    Martínez, G.J.: A note on elementary cellular automata classification. J. Cell. Autom. 8(3–4), 233–259 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Martínez, G.J., Adamatzky, A., Mora, J.C.S.T., Sanz, R.A.: How to make dull cellular automata complex by adding memory: rule 126 case study. Complexity 15(6), 34–49 (2012)MathSciNetGoogle Scholar
  16. 16.
    Martínez, G.J., Adamatzky, A., Sanz, R.A.: Complex dynamics of cellular automata emerging in chaotic rules. J. Nonlinear Syst. Appl. 22(2) (2012).  https://doi.org/10.1142/S021812741250023X
  17. 17.
    McIntosh, H.V.: Wolfram’s class IV and a good life. Physica D 45, 105–121 (1990)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    McIntosh, H.V.: One Dimensional Cellular Automata. Luniver Press, Bristol (2009)Google Scholar
  19. 19.
    Mainzer, K., Chua, L.: The Universe as Automaton: From Simplicity and Symmetry to Complexity. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  21. 21.
    Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New York (2009)zbMATHGoogle Scholar
  22. 22.
    Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T., Vergara, S.V.C.: Determining a regular language by glider-based structures called phases \({\rm f}_{i}\_{1}\) in rule 110. J. Cell. Autom. 3(3), 231–270 (2008)Google Scholar
  23. 23.
    Prokopenko, M., Michael Harré, M., Lizier, J.T., Boschetti, F., Peppas, P., Kauffman, S.: Self-referential basis of undecidable dynamics: from The Liar Paradox and The Halting Problem to The Edge of Chaos, CoRR abs/1711.02456 (2017)Google Scholar
  24. 24.
    Sanz, R.A., Martin, M.: Elementary CA with memory. Complex Syst. 14, 99–126 (2003)zbMATHGoogle Scholar
  25. 25.
    Sanz, R.A.: Elementary rules with elementary memory rules: the case of linear rules. J. Cell. Autom. 1, 71–87 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sanz, R.A.: Cellular Automata with Memory. Old City Publishing, Philadelphia (2009)zbMATHGoogle Scholar
  27. 27.
    Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-Wesley Publishing Company, Reading (1992)zbMATHGoogle Scholar
  28. 28.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Wolfram, S.: Cellular Automata and Complexity. Addison-Wesley Publishing Company, Englewood Cliffs (1994)zbMATHGoogle Scholar
  30. 30.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)zbMATHGoogle Scholar
  31. 31.
    Wuensche, A.: Classifying cellular automata automatically. Complexity 4(3), 47–66 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gabriela M. González
    • 1
  • Genaro J. Martínez
    • 1
    • 2
  • M. A. Aziz Alaoui
    • 3
  • Fangyue Chen
    • 4
  1. 1.Artificial Life Robotics Lab, Escuela Superior de CómputoInstituto Politécnico NacionalMexico CityMexico
  2. 2.Unconventional Computing LabUniversity of the West of EnglandBristolUK
  3. 3.Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCNLe HavreFrance
  4. 4.School of ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations