Network Analysis of ERC20 Tokens Trading on Ethereum Blockchain

  • Shahar SominEmail author
  • Goren Gordon
  • Yaniv Altshuler
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Issuance of cryptocurrencies on top of the Blockchain system by startups and private sector companies is becoming a ubiquitous phenomenon, inducing the trading of these crypto-coins among their holders using dedicated exchanges. Apart from being a trading ledger for tokens, Blockchain can also be observed as a social network. Analyzing and modeling the dynamics of the “social signals” of this network can contribute to our understanding of this ecosystem and the forces acting within. This work is the first analysis of the network properties of the ERC20 protocol compliant crypto-coins’ trading data. Considering all trading wallets as a network’s nodes, and constructing its edges using buy–sell trades, we can analyze the network properties of the ERC20 network. We demonstrate that the network displays strong power-law properties, coinciding with current network theory expectations, however nonetheless, are the first scientific validation of it, for the ERC20 trading data.

The examined data is composed of over 30 million ERC20 tokens trades, performed by over 6.8 million unique wallets, lapsing over a two years period between February 2016 and February 2018.


Complex systems Social physics Network analysis Blockchain Ethereum Smart contracts ERC20 tokens Cryptocurrency 


  1. 1.
    Buterin, V., et al.: A next-generation smart contract and decentralized application platform. White paper (2014)Google Scholar
  2. 2.
    Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A.: Security and Privacy in Social Networks. Springer Science & Business Media, New York (2012)Google Scholar
  3. 3.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Barabasi, A.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.-L.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A: Math. Theor. 41(22), 224015 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Nat. Acad. Sci. (PNAS) 106, 15274–15278 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Altshuler, Y., Aharony, N., Pentland, A., Elovici, Y., Cebrian, M.: Stealing reality: when criminals become data scientists (or vice versa). In: Intelligent Systems, vol. 26, pp. 22–30. IEEE, November–December 2011Google Scholar
  8. 8.
    Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. Proc. Nat. Acad. Sci. 104(18), 7332–7336 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Altshuler, Y., Aharony, N., Fire, M., Elovici, Y., Pentland, A.: Incremental learning with accuracy prediction of social and individual properties from mobile-phone data. CoRR (2011)Google Scholar
  10. 10.
    Golem (2017)Google Scholar
  11. 11.
    Endor – inventing the “Google for Predictive Analytics” (2017)Google Scholar
  12. 12.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)Google Scholar
  13. 13.
    Catalini, C., Gans, J.S.: Initial coin offerings and the value of crypto tokens, Technical report, National Bureau of Economic Research (2018)Google Scholar
  14. 14.
    Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  15. 15.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Newman, M.E.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2007)Google Scholar
  18. 18.
    Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)CrossRefGoogle Scholar
  19. 19.
    Shmueli, E., Mazeh, I., Radaelli, L., Pentland, A.S., Altshuler, Y.: Ride sharing: a network perspective. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 434–439. Springer (2015)Google Scholar
  20. 20.
    Altshuler, Y., Puzis, R., Elovici, Y., Bekhor, S., Pentland, A.S.: On the rationality and optimality of transportation networks defense: a network centrality approach. Secur. Transp. Syst. 35–63 (2015)Google Scholar
  21. 21.
    Altshuler, Y., Fire, M., Aharony, N., Elovici, Y., Pentland, A.: How many makes a crowd? On the correlation between groups’ size and the accuracy of modeling. In: International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction, pp. 43–52. Springer (2012)Google Scholar
  22. 22.
    Altshuler, Y., Fire, M., Shmueli, E., Elovici, Y., Bruckstein, A., Pentland, A.S., Lazer, D.: The social amplifier-reaction of human communities to emergencies. J. Stat. Phys. 152(3), 399–418 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Altshuler, Y., Pan, W., Pentland, A.: Trends prediction using social diffusion models. In: International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction, pp. 97–104. Springer (2012)Google Scholar
  24. 24.
    Pan, W., Altshuler, Y., Pentland, A.: Decoding social influence and the wisdom of the crowd in financial trading network. In: 2012 International Confernece on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Confernece on Social Computing (SocialCom), pp. 203–209. IEEE (2012)Google Scholar
  25. 25.
    Shmueli, E., Altshuler, Y., et al.: Temporal dynamics of scale-free networks. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 359–366. Springer (2014)Google Scholar
  26. 26.
    Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok: research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 104–121. IEEE (2015)Google Scholar
  27. 27.
    Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)Google Scholar
  28. 28.
    Shrobe, H., Shrier, D.L., Pentland, A.: New Solutions for Cybersecurity. MIT Press, Cambridge (2018)Google Scholar
  29. 29.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: International Conference on Financial Cryptography and Data Security, pp. 6–24. Springer (2013)Google Scholar
  30. 30.
    Maesa, D.D.F., Marino, A., Ricci, L.: Uncovering the bitcoin blockchain: an analysis of the full users graph. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 537–546. IEEE (2016)Google Scholar
  31. 31.
    Lischke, M., Fabian, B.: Analyzing the bitcoin network: the first four years. Future Internet 8(1), 7 (2016)CrossRefGoogle Scholar
  32. 32.
    Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms, applications, and design patterns. In: International Conference on Financial Cryptography and Data Security, pp. 494–509. Springer (2017)Google Scholar
  33. 33.
    Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, I.: New kids on the block: an analysis of modern blockchains. arXiv preprint arXiv:1606.06530 (2016)
  34. 34.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  35. 35.
    Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: International Conference on Principles of Security and Trust, pp. 164–186. Springer (2017)Google Scholar
  36. 36.
    Json prc api (2018)Google Scholar
  37. 37.
    Erdös, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev, Modern Phys. 74(1), 47 (2002)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Callaway, D.S., Newman, M.E., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Barabási, A.-L.: Linked: The new science of networks (2003)Google Scholar
  43. 43.
    Barabási, A.-L.: The elegant law that governs us all (2017)Google Scholar
  44. 44.
    Palla, G., Barabasi, A., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Altshuler, Y., Shmueli, E., Zyskind, G., Lederman, O., Oliver, N., Pentland, A.: Campaign optimization through behavioral modeling and mobile network analysis. IEEE Trans. Computat. Soc. Syst. 1(2), 121–134 (2014)CrossRefGoogle Scholar
  46. 46.
    Altshuler, Y., Shmueli, E., Zyskind, G., Lederman, O., Oliver, N., Pentland, A.: Campaign optimization through mobility network analysis. In: Geo-Intelligence and Visualization Through Big Data Trends, pp. 33–74 (2015)Google Scholar
  47. 47.
    Pentland, A., Altshuler, Y.: Social Physics and Cybercrime. In: New Solutions for Cybersecurity, pp. 351–364. MIT Press (2018)Google Scholar
  48. 48.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shahar Somin
    • 1
    • 3
    Email author
  • Goren Gordon
    • 2
    • 3
  • Yaniv Altshuler
    • 1
    • 3
  1. 1.MIT Media LabCambridgeUSA
  2. 2.Curiosity Lab, Industrial Engineering DepartmentTel Aviv UniversityTel AvivIsrael
  3. 3.Endor Ltd.Tel AvivIsrael

Personalised recommendations