Advertisement

Neural-Inspired Anomaly Detection

  • Stephen J. Verzi
  • Craig M. Vineyard
  • James B. Aimone
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Anomaly detection is an important problem in various fields of complex systems research including image processing, data analysis, physical security and cybersecurity. In image processing, it is used for removing noise while preserving image quality, and in data analysis, physical security and cybersecurity, it is used to find interesting data points, objects or events in a vast sea of information. Anomaly detection will continue to be an important problem in domains intersecting with “Big Data”. In this paper we provide a novel algorithm for anomaly detection that uses phase-coded spiking neurons as basic computational elements.

Notes

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U. S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525. SAND No. 2018-5891 C.

References

  1. 1.
    Chang, C.I., Chiang, S.S.: Anomaly detection and classification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 40(6), 1314–1325 (2002).  https://doi.org/10.1109/TGRS.2002.800280ADSCrossRefGoogle Scholar
  2. 2.
    Chen, T., Wu, H.R.: Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8(1), 1–3 (2001).  https://doi.org/10.1109/97.889633ADSCrossRefGoogle Scholar
  3. 3.
    Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE–13(2), 222–232 (1987).  https://doi.org/10.1109/TSE.1987.232894CrossRefGoogle Scholar
  4. 4.
    Dong, Y., Chan, R.H., Xu, S.: A detection statistic for random-valued impulse noise. IEEE Trans. Image Process. 16(4), 1112–1120 (2007).  https://doi.org/10.1109/TIP.2006.891348ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005).  https://doi.org/10.1109/TIP.2005.857261ADSCrossRefGoogle Scholar
  6. 6.
    Honda, T., Nayar, S.K.: Finding “anomalies” in an arbitrary image. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, (ICCV), pp. 516–523. IEEE (2001).  https://doi.org/10.1109/ICCV.2001.937669
  7. 7.
    Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire-models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92(2), 959–976 (2004).  https://doi.org/10.1152/jn.00190.2004CrossRefGoogle Scholar
  8. 8.
    Muthukrishnan, R., Poonkuzhali, G.: A comprehensive survey on outlier detection methods. Am. Eurasian J. Sci. Res. 12(3), 161–171 (2017).  https://doi.org/10.5829/idosi.aejsr.2017.161.171CrossRefGoogle Scholar
  9. 9.
    Patcha, A., Park, J.M.: An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 51, 3448–3470 (2007).  https://doi.org/10.1016/j.comnet.2007.02.001CrossRefGoogle Scholar
  10. 10.
    Stubbs, J.J., Birch, G.C., Woo, B.L., Kouhestani, C.G.: Physical security assessment with convolutional neural network transfer learning. In: Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST). IEEE (2017).  https://doi.org/10.1109/CCST.2017.8167800
  11. 11.
    Teng, H.S., Chen, K., Lu, S.C.Y.: Adaptive real-time anomaly detection using inductively generated sequential patterns. In: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, pp. 278–284. IEEE (1990).  https://doi.org/10.1109/RISP.1990.63857
  12. 12.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998).  https://doi.org/10.1109/ICCV.1998.710815
  13. 13.
    Verzi, S.J., Rothganger, F., Parekh, O.D., Quach, T.T., Miner, N.E., James, C.D., Aimone, J.B.: Computing with spikes: the advantage of fine-grained timing (Accepted)Google Scholar
  14. 14.
    Verzi, S.J., Vineyard, C.M., Vugrin, E.D., Galiardi, M., James, C.D., Aimone, J.B.: Optimization-based computation with spiking neurons. In: Proceedings of the IEEE 2017 International Joint Conference on Neural Network (IJCNN), pp. 2015–2022. IEEE(2017).  https://doi.org/10.1109/IJCNN.2017.7966098
  15. 15.
    Woo, B.L., Birch, G.C., Stubbs, J.J., Kouhestani, C.G.: Unmanned aerial system detection and assessment through temporal frequency analysis. In: Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST). IEEE (2017).  https://doi.org/10.1109/CCST.2017.8167832
  16. 16.
    Yan, M.: Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J. Imaging Sci. 6(3), 1227–1245 (2013).  https://doi.org/10.1137/12087178XMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu, Y., Huang, C.: An improved median filtering algorithm for image noise reduction. Phys. Procedia 25, 609–616 (2012).  https://doi.org/10.1016/j.phpro.2012.03.133ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stephen J. Verzi
    • 1
  • Craig M. Vineyard
    • 1
  • James B. Aimone
    • 1
  1. 1.Sandia National LaboratoriesAlbuauerqueUSA

Personalised recommendations