Evolutionary Development and the VCRIS Model of Natural Selection

  • John M. SmartEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


This paper offers a systems definition of the phrase evolutionary development (evo devo, ED), and a few examples of generic evolutionary and developmental process in autopoetic (self-reproducing) systems. It introduces a toy conceptual model, the VCRIS evo devo model of natural selection, exploring autopoetic selection in both evolutionary and developmental terms. It includes an empirical observation, the 95/5 rule, generalized from observations in evo-devo biology, to offer a preliminary sketch of the dynamical interaction of evolutionary and developmental processes in living replicators. Autopoetic models may be applied to both to living systems and to nonliving adaptive replicators at many scales, even to the universe as a complex system, if it is a replicator in the multiverse. Evo devo models offer potentially fundamental dynamical and informational ways to understand autopoetic systems. If such models are to become validated in living systems, and generalized to nonliving autopoetic systems, they will require significant advances in both simulation and theory in coming years.


95/5 rule Autopoetic systems Biological development Complex adaptive systems Convergent evolution Developmental selection Evo-devo biology Evo devo models Evolutionary biology Evolutionary development Evolutionary selection Fine-tuning Multiverse Natural selection Niche construction Modern evolutionary synthesis Self-Organization Stigmergy Stochastic processes 



The author thanks Evo Devo Universe co-directors Clement Vidal, Georgi Georgiev, Michael Price, and Claudio Flores-Martinez, and the 100 or so scholars on the EDU-Talk listserve for helpful discussions. Thanks also to Carlos Gershenson and the CCS2018 committee for approving our satellite meeting on Evolution, Development, and Complexity at CCS2018, where earlier versions of these ideas were discussed.


  1. Arthur, W.: The Origin of Animal Body Plans. Cambridge U. Press, Cambridge (2000)Google Scholar
  2. Bejan, A., Errera, M.R.: Wealth inequality. J. Appl. Phys. 121(12), 124903 (2017)ADSCrossRefGoogle Scholar
  3. Bourgine, P., Stewart, J.: Autopoiesis and Cognition. Artif. Life 10, 327–345 (2004)CrossRefGoogle Scholar
  4. Callebaut, W., Rasskin-Gutman, D.: Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, Cambridge (2005)Google Scholar
  5. Carroll, S.B.: Endless Forms Most Beautiful. Norton, New York (2005)Google Scholar
  6. Conway-Morris, S.: The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford U. Press, Oxford (1998)Google Scholar
  7. Conway-Morris, S.: Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge U. Press, Cambridge (2004)Google Scholar
  8. Conway-Morris, S.: The Runes of Evolution: How the Universe Became Self-Aware. Templeton Press, West Conshohocken (2015)Google Scholar
  9. Dryden, D.T.F., Thomson, A.R., White, J.H.: How much of protein sequence space has been explored by life on Earth? J. R. Soc. Interface 5, 953–956 (2008)CrossRefGoogle Scholar
  10. Eldredge, N., Gould, S.J.: Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T.M. (ed.) Models in Paleobiology, Freeman & Cooper (1972)Google Scholar
  11. Flores-Martinez, C.L.: SETI in the light of cosmic convergent evolution. Acta Astronaut. 104(1), 341–349 (2014)ADSCrossRefGoogle Scholar
  12. Gerhart, J.C., Kirschner, M.W.: The Plausibility of Life. Yale U. Press, New Haven (2005)Google Scholar
  13. Gerhart, J.C., Kirschner, M.W.: The theory of facilitated variation. PNAS 104(Suppl), 8582–8589 (2007)ADSCrossRefGoogle Scholar
  14. Gould, S.J.: Ontogeny and Phylogeny. Harvard U. Press, Cambridge (1977)Google Scholar
  15. Gould, S.J.: The Structure of Evolutionary Theory. Harvard U. Press, Cambridge (2002)Google Scholar
  16. Hall, B.K. (ed.): Environment, Development, and Evolution. MIT Press, Cambridge (2003)Google Scholar
  17. Heylighen, F.: Accelerating socio-technological evolution: from ephemeralization and stigmergy to the Global Brain. In: Modelski, G., Devezas, T., Thompson, W.R. (eds.) Globalization as Evolutionary Process, Routledge (2008)Google Scholar
  18. Heylighen, F.: Stigmergy as a Universal Coordination Mechanism. Cogn. Syst. Res. 38, 4–13 (2016)CrossRefGoogle Scholar
  19. Huxley, J.: Evolution: The Modern Synthesis. George Allen & Unwin, London (1942)Google Scholar
  20. Jablonka, E., Lamb, M.J.: Epigenetic Inheritance and Evolution: The Lamarckian Dimension. Oxford U. Press, Oxford (1995)Google Scholar
  21. Losos, Johnathan B.: Improbable Destinies: Fate, Chance, and the Future of Evolution, Riverhead Books (2017)Google Scholar
  22. Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90, 49–59 (2003)ADSGoogle Scholar
  23. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. D. Reidel, Dordrecht (1973/1980)Google Scholar
  24. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of Human Understanding. Shambhala, Boston (1987)Google Scholar
  25. McGhee, G.R.: Convergent Evolution: Limited Forms Most Beautiful. MIT Press, Cambridge (2011)CrossRefGoogle Scholar
  26. McLeish, T.C.B.: Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence. Interface Focus 5, 41–53 (2015)CrossRefGoogle Scholar
  27. Mingers, J.: Self-Producing Systems. Kluwer Academic/Plenum, New York (1995)CrossRefGoogle Scholar
  28. Müller, G.B., Newman, S.A. (eds.): The Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. MIT Press, Cambridge (2003)Google Scholar
  29. Noble, D.: Evolution viewed from physics, physiology and medicine. Interface Focus 7(5), 20160159 (2017)CrossRefGoogle Scholar
  30. Odling-Smee, J., et al.: Niche Construction: The Neglected Process in Evolution. Princeton U. Press, Princeton (2003)Google Scholar
  31. Ogura, A., Kazuho, I., Gojobori, T.: Comparative analysis of gene expression for convergent evolution of camera eye between octopus and human. Genome Res. 14, 1555–1561 (2004)CrossRefGoogle Scholar
  32. Pigliucci, M.: Do we need an extended evolutionary synthesis? Evolution 61, 2743–2749 (2007)CrossRefGoogle Scholar
  33. Pigliucci, M., Müller, G.B. (eds.): Evolution: The Extended Synthesis. MIT Press, Cambridge (2010)Google Scholar
  34. Poundstone, W.: The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. William Morrow & Co, New York (1985)Google Scholar
  35. Powell, R.: Convergent evolution and the limits of natural selection. Euro. J. Phil. Sci. 2, 355–373 (2012)MathSciNetCrossRefGoogle Scholar
  36. Powell, R., Mariscal, C.: Convergent evolution as natural experiment: the tape of life reconsidered. Interface Focus 5, 40–53 (2015)CrossRefGoogle Scholar
  37. Price, M.: Entropy and selection: Life as an adaptation for universe replication, Complexity (2017)Google Scholar
  38. Raff, R.: The Shape of Life: Genes, Development, and the Evolution of Animal Form. U. of Chicago Press, Chicago (1996)Google Scholar
  39. Russell, C.M. (2006). Accessed 5 Mar 2018
  40. Schlosser, G., Wagner, G.P. (eds.): Modularity in Development and Evolution. U. of Chicago Press, Chicago (2004)Google Scholar
  41. Shapiro, J.A.: Evolution: A View from the 21st Century. FT Press Science, Upper Saddle River (2011)Google Scholar
  42. Smart, J.M.: Evo devo universe? a framework for speculations on cosmic culture. In: Steven, J.D., Mark, L.L. (eds.) Cosmos and Culture, NASA Press (2008)Google Scholar
  43. Smart, J.M.: Evo devo foresight. In: The Foresight Guide (2017). Accessed 28 Mar 2018
  44. Smolin, L.: Did the Universe Evolve? Class. Quantum Gravity 9, 173–191 (1992)ADSMathSciNetCrossRefGoogle Scholar
  45. Smolin, L.: The Life of the Cosmos. Oxford U. Press, Oxford (1997)zbMATHGoogle Scholar
  46. Smolin, L.: Cosmological natural selection as the explanation for the complexity of the universe. Phys. A 340, 705–713 (2004)CrossRefGoogle Scholar
  47. Steele, E.J.: Somatic Selection and Adaptive Evolution: On the Inheritance of Acquired Characters, 2nd edn. U. of Chicago Press, Chicago (1981)Google Scholar
  48. Vaas, R.: Is there a Darwinian evolution of the cosmos? In: Proceedings of the MicroCosmos-MacroCosmos Conference, Aachen (1998)Google Scholar
  49. Verhulst, J.: Discovering Evolutionary Principles through Comparative Morphology. Adonis Press, Ghent (2003)Google Scholar
  50. Vermeij, G.J.: Historical contingency and the purported uniqueness of evolutionary innovations. PNAS 103, 1804–1809 (2006)ADSCrossRefGoogle Scholar
  51. Vermeij, G.J.: Nature: an economic history. Princeton U. Press, Princeton (2009)CrossRefGoogle Scholar
  52. Vidal, C.: Computational and biological analogies for understanding fine-tuned parameters in physics. Found. Sci. 15(4), 375–393 (2010)CrossRefGoogle Scholar
  53. Wagman and Stephens: Surprising ‘ultra-conserved regions discovered in human genome. UCSC Currents (2004)Google Scholar
  54. West-Eberhard, M.J.: Developmental Plasticity and Evolution. Oxford U. Press, Oxford (2003)Google Scholar
  55. Wilkins, A.S.: The Evolution of Developmental Pathways. Sinauer Associates, Sunderland (2001)Google Scholar
  56. Yi, H., et al.: Gene expression atlas for human embryogenesis. FASEB J. 24(9), 3341–3350 (2010)CrossRefGoogle Scholar
  57. Zimmer, C.: A Planet of Viruses, 2nd edn. U. Chicago Press, Chicago (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations