Advertisement

Temporal Data Management – An Overview

  • Michael H. Böhlen
  • Anton Dignös
  • Johann Gamper
  • Christian S. Jensen
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 324)

Abstract

Despite the ubiquity of temporal data and considerable research on the effective and efficient processing of such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in the processing of temporal data that captures multiple states of reality. The SQL:2011 standard incorporates some temporal support, and commercial DBMSs have started to offer temporal functionality in a step-by-step manner, such as the representation of temporal intervals, temporal primary and foreign keys, and the support for so-called time-travel queries that enable access to past states.

This tutorial gives an overview of state-of-the-art research results and technologies for storing, managing, and processing temporal data in relational database management systems. Following an introduction that offers a historical perspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by existing systems. The tutorial ends by covering a recently proposed framework that provides comprehensive support for processing temporal data and that has been implemented in PostgreSQL.

References

  1. 1.
    Agesen, M., Böhlen, M.H., Poulsen, L., Torp, K.: A split operator for now-relative bitemporal databases. In: Proceedings of the 17th International Conference on Data Engineering, ICDE 2001, pp. 41–50 (2001)Google Scholar
  2. 2.
    Al-Kateb, M., Ghazal, A., Crolotte, A.: An efficient SQL rewrite approach for temporal coalescing in the teradata RDBMS. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 375–383. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32597-7_32CrossRefGoogle Scholar
  3. 3.
    Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.: Temporal query processing in teradata. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT 2013, pp. 573–578 (2013)Google Scholar
  4. 4.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefGoogle Scholar
  5. 5.
    Arbesman, S.: Stop hyping big data and start paying attention to ‘long data’. Wired.com (2013). https://www.wired.com/2013/01/forget-big-data-think-long-data/
  6. 6.
    Bair, J., Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Notions of upward compatibility of temporal query languages. Wirtschaftsinformatik 39(1), 25–34 (1997)Google Scholar
  7. 7.
    Behrend, A., et al.: Temporal state management for supporting the real-time analysis of clinical data. In: Bassiliades, N., et al. (eds.) New Trends in Database and Information Systems II. AISC, vol. 312, pp. 159–170. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-10518-5_13CrossRefGoogle Scholar
  8. 8.
    Ben-Gan, I., Sarka, D., Wolter, R., Low, G., Katibah, E., Kunen, I.: Inside Microsoft SQL Server 2008 T-SQL programming, Chap. 12. In: Temporal Support in the Relational Model. Microsoft Press (2008)Google Scholar
  9. 9.
    Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-662-04228-1CrossRefMATHGoogle Scholar
  10. 10.
    Bettini, C., Sean Wang, X., Jajodia, S.: Temporal granularity. In: Liu and Özsu [60], pp. 2968–2973Google Scholar
  11. 11.
    Böhlen, M.H., Gamper, J., Jensen, C.S.: An algebraic framework for temporal attribute characteristics. Ann. Math. Artif. Intell. 46(3), 349–374 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your temporal data? In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, TIME 2006, pp. 121–136 (2006)Google Scholar
  13. 13.
    Böhlen, M., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for temporal data. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 257–275. Springer, Heidelberg (2006).  https://doi.org/10.1007/11687238_18CrossRefGoogle Scholar
  14. 14.
    Böhlen, M.H., Jensen, C.S.: Temporal data model and query language concepts. In: Encyclopedia of Information Systems, pp. 437–453. Elsevier (2003)CrossRefGoogle Scholar
  15. 15.
    Böhlen, M.H., Jensen, C.S.: Sequenced semantics. In: Liu and Özsu [60], pp. 2619–2621Google Scholar
  16. 16.
    Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Temporal statement modifiers. ACM Trans. Database Syst. 25(4), 407–456 (2000)CrossRefGoogle Scholar
  17. 17.
    Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Current semantics. In: Liu and Özsu [60], pp. 544–545Google Scholar
  18. 18.
    Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Nonsequenced semantics. In: Liu and Özsu [60], pp. 1913–1915Google Scholar
  19. 19.
    Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: Proceedings of 22th International Conference on Very Large Data Bases, VLDB 1996, pp. 180–191 (1996)Google Scholar
  20. 20.
    Cohen Boulakia, S., Tan, W.C.: Provenance in scientific databases. In: Liu and Özsu [60], pp. 2202–2207Google Scholar
  21. 21.
    Bouros, P., Mamoulis, N.: A forward scan based plane sweep algorithm for parallel interval joins. PVLDB 10(11), 1346–1357 (2017)Google Scholar
  22. 22.
    Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J. 26(3), 447–466 (2017)CrossRefGoogle Scholar
  23. 23.
    Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL databases with temporal logic. ACM Trans. Database Syst. 26(2), 145–178 (2001)CrossRefGoogle Scholar
  24. 24.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)CrossRefGoogle Scholar
  25. 25.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)Google Scholar
  26. 26.
    Davis, J.: Online temporal PostgreSQL reference (2009). http://temporal.projects.postgresql.org/reference.html
  27. 27.
    Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, pp. 433–444 (2012)Google Scholar
  28. 28.
    Dignös, A., Böhlen, M.H., Gamper, J.: Query time scaling of attribute values in interval timestamped databases. In: Proceedings of the 29th International Conference on Data Engineering, ICDE 2013, pp. 1304–1307 (2013)Google Scholar
  29. 29.
    Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2014, pp. 1459–1470 (2014)Google Scholar
  30. 30.
    Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst. 41(4), 26:1–26:46 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dyreson, C.E.: Chronon. In: Liu and Özsu [60], p. 329Google Scholar
  32. 32.
    Dyreson, C.E., Jensen, C.S., Snodgrass, R.T.: Now in temporal databases. In: Liu and Özsu [60], pp. 1920–1924Google Scholar
  33. 33.
    Dyreson, C.E., Lin, H., Wang, Y.: Managing versions of web documents in a transaction-time web server. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 422–432 (2004)Google Scholar
  34. 34.
    Dyreson, C.E., Rani, V.A.: Translating temporal SQL to nested SQL. In: Proceedings of the 23rd International Symposium on Temporal Representation and Reasoning, TIME 2016, pp. 157–166 (2016)Google Scholar
  35. 35.
    Dyreson, C.E., Rani, V.A., Shatnawi, A.: Unifying sequenced and non-sequenced semantics. In: Proceedings of the 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015, pp. 38–46 (2015)Google Scholar
  36. 36.
    Jensen, C.S., Clifford, J., Gadia, S.K., Grandi, F., Kalua, P.P., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari, A., Nair, S.S., Peressi, E., Pernici, B., Robertson, E.L., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Tansel, A., Tiberio, P., Tuzhilin, A., Wuu, G.T.J.: A consensus test suite of temporal database queries. Technical report R 93–2034, Aalborg University, Department of Mathematics and Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark, November 1993Google Scholar
  37. 37.
    Etzion, O., Jajodia, S., Sripada, S. (eds.): Temporal Databases: Research and Practice. LNCS, vol. 1399. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0053695CrossRefGoogle Scholar
  38. 38.
    Gadia, S.K.: A homogeneous relational model and query languages for temporal databases. ACM Trans. Database Syst. 13(4), 418–448 (1988)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Gadia, S.K., Yeung, C.-S.: A generalized model for a relational temporal database. In: Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, SIGMOD 1988, pp. 251–259 (1988)CrossRefGoogle Scholar
  40. 40.
    Galton, A.: A critical examination of Allen’s theory of action and time. Artif. Intell. 42(2–3), 159–188 (1990)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gamper, J., Böhlen, M.H., Jensen, C.S.: Temporal aggregation. In: Liu and Özsu [60], pp. 2924–2929Google Scholar
  42. 42.
    Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal databases. VLDB J. 14(1), 2–29 (2005)CrossRefGoogle Scholar
  43. 43.
    Gao, D., Snodgrass, R.T.: Temporal slicing in the evaluation of XML queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, pp. 632–643 (2003)CrossRefGoogle Scholar
  44. 44.
    Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Technology, 3rd edn., pp. 1914–1922. IGI Global (2015)Google Scholar
  45. 45.
    Grandi, F., Mandreoli, F., Martoglia, R., Penzo, W.: A relational algebra for streaming tables living in a temporal database world. In: Proceedings of the 24th International Symposium on Temporal Representation and Reasoning, TIME 2017, pp. 15:1–15:17 (2017)Google Scholar
  46. 46.
    Grandi, F., Mandreoli, F., Tiberio, P.: Temporal modelling and management of normative documents in XML format. Data Knowl. Eng. 54(3), 327–354 (2005)CrossRefGoogle Scholar
  47. 47.
    Jensen, C.S., Dyreson, C.E., Böhlen, M.H., Clifford, J., Elmasri, R., Gadia, S.K., Grandi, F., Hayes, P.J., Jajodia, S., Käfer, W., Kline, N., Lorentzos, N.A., Mitsopoulos, Y.G., Montanari, A., Nonen, D.A., Peressi, E., Pernici, B., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Soo, M.D., Uz Tansel, A., Tiberio, P., Wiederhold, G.: The consensus glossary of temporal database concepts. In Temporal Databases, Dagstuhl, pp. 367–405 (1997)Google Scholar
  48. 48.
    Jensen, C.S., Snodgrass, R.T.: Snapshot equivalence. In: Liu and Özsu [60], p. 2659Google Scholar
  49. 49.
    Jensen, C.S., Snodgrass, R.T.: Temporal data models. In: Liu and Özsu [60], pp. 2952–2957Google Scholar
  50. 50.
    Jensen, C.S., Snodgrass, R.T.: Temporal element. In: Liu and Özsu [60], p. 2966Google Scholar
  51. 51.
    Jensen, C.S., Snodgrass, R.T.: Time instant. In: Liu and Özsu [60], p. 3112Google Scholar
  52. 52.
    Jensen, C.S., Snodgrass, R.T.: Timeslice operator. In: Liu and Özsu [60], pp. 3120–3121Google Scholar
  53. 53.
    Jensen, C.S., Snodgrass, R.T.: Transaction time. In: Liu and Özsu [60], pp. 3162–3163Google Scholar
  54. 54.
    Jensen, C.S., Snodgrass, R.T.: Valid time. In: Liu and Özsu [60], pp. 3253–3254Google Scholar
  55. 55.
    Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F., May, N.: Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 1173–1184 (2013)Google Scholar
  56. 56.
    Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F.: Comprehensive and interactive temporal query processing with SAP HANA. PVLDB 6(12), 1210–1213 (2013)Google Scholar
  57. 57.
    Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: Proceedings of the 11th International Conference on Data Engineering, ICDE 1995, pp. 222–231 (1995)Google Scholar
  58. 58.
    Kulkarni, K.G., Michels, J.-E.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)CrossRefGoogle Scholar
  59. 59.
    Künzner, F., Petković, D.: A comparison of different forms of temporal data management. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 92–106. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18422-7_8CrossRefGoogle Scholar
  60. 60.
    Liu, L., Tamer Özsu, M. (eds.): Encyclopedia of Database Systems. Springer, Boston (2009)MATHGoogle Scholar
  61. 61.
    López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)CrossRefGoogle Scholar
  62. 62.
    Lorentzos, N.A.: Time period. In: Liu and Özsu [60], p. 3113Google Scholar
  63. 63.
    Lorentzos, N.A., Mitsopoulos, Y.G.: SQL extension for interval data. IEEE Trans. Knowl. Data Eng. 9(3), 480–499 (1997)CrossRefGoogle Scholar
  64. 64.
  65. 65.
    Moffitt, V.Z., Stoyanovich, J.: Towards sequenced semantics for evolving graphs. In: Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, pp. 446–449 (2017)Google Scholar
  66. 66.
    Montanari, A., Chomicki, J.: Time domain. In: Liu and Özsu [60], pp. 3103–3107Google Scholar
  67. 67.
    Moon, B., López, I.F.V., Immanuel, V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)CrossRefGoogle Scholar
  68. 68.
    Murray, C.: Oracle database workspace manager developer’s guide (2008). http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf
  69. 69.
    Oracle. Database development guide - temporal validity support (2016). https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
  70. 70.
    Papaioannou, K., Böhlen, M.H.: TemProRA: top-k temporal-probabilistic results analysis. In: Proceedings of the 32nd IEEE International Conference on Data Engineering, ICDE 2016, pp. 1382–1385 (2016)Google Scholar
  71. 71.
    Persia, F., Bettini, F., Helmer, S.: An interactive framework for video surveillance event detection and modeling. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 2515–2518 (2017)Google Scholar
  72. 72.
    Petković, D.: Modern temporal data models: strengths and weaknesses. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 136–146. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18422-7_12CrossRefGoogle Scholar
  73. 73.
    Petkovic, Dušan: Temporal data in relational database systems: a comparison. In: Rocha, Á., Correia, A.M., Adeli, H., Teixeira, M.M., Reis, L.P. (eds.) New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 13–23. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31232-3_2CrossRefGoogle Scholar
  74. 74.
    Piatov, D., Helmer, S.: Sweeping-based temporal aggregation. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 125–144. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64367-0_7CrossRefGoogle Scholar
  75. 75.
    Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In: Proceedings of the 32nd International Conference on Data Engineering, ICDE 2016, pp. 1098–1109 (2016)Google Scholar
  76. 76.
    Pitoura, E.: Historical graphs: models, storage, processing. In: Zimányi, E. (ed.) eBISS 2017. LNBIP, vol. 324, pp. 84–111. Springer, Cham (2017)Google Scholar
  77. 77.
    PostgreSQL Global Development Group. Documentation manual PostgreSQL - range types (2012). http://www.postgresql.org/docs/9.2/static/rangetypes.html
  78. 78.
    Rolland, C., Bodart, F., Léonard, M. (eds.) Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information Systems (1988)Google Scholar
  79. 79.
    Saracco, C., Nicola, M., Gandhi, L.: A matter of time: Temporal data management in DB2 10 (2012). http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
  80. 80.
    Snodgrass, R.T. (ed.): Proceedings of the International Workshop on an Infrastructure for Temporal Databases (1993)Google Scholar
  81. 81.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)Google Scholar
  82. 82.
    Snodgrass, R.T. (ed.): A Case Study of Temporal Data. Teradata Corporation (2010)Google Scholar
  83. 83.
    Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding valid time to SQL/temporal. Technical report ANSI-96-501r2, October 1996Google Scholar
  84. 84.
    Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Transitioning temporal support in TSQL2 to SQL3. In: Temporal Databases, Dagstuhl, pp. 150–194 (1997)CrossRefGoogle Scholar
  85. 85.
    Son, D., Elmasri, R.: Efficient temporal join processing using time index. In: Proceedings of the 8th International Conference on Scientific and Statistical Database Management, SSDBM 1996, pp. 252–261 (1996)Google Scholar
  86. 86.
    Soo, M.D., Jensen, C.S., Snodgrass, R.T.: An algebra for TSQL2. In: The TSQL2 Temporal Query Language, Chap. 27, pp. 501–544. Kluwer (1995)CrossRefGoogle Scholar
  87. 87.
    Uz Tansel, A., Clifford, J., Gadia, S.K., Jajodia, S., Segev, A., Snodgrass, R.T. (eds.): Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings (1993)Google Scholar
  88. 88.
    Tao, Y., Papadias, D., Faloutsos, C.: Approximate temporal aggregation. In: Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, pp. 190–201 (2004)Google Scholar
  89. 89.
    Teradata. Teradata database 13.10 - temporal table support (2010). http://www.info.teradata.com/download.cfm?ItemID=1005295
  90. 90.
    Teradata. Teradata database 14.10 - temporal table support (2014). http://www.info.teradata.com/eDownload.cfm?itemid=131540028
  91. 91.
    Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based semantics in temporal relational databases: a treatment of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng. 16(5), 540–551 (2004)CrossRefGoogle Scholar
  92. 92.
    Toman, D.: Point vs. interval-based query languages for temporal databases. In: Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1996, pp. 58–67 (1996)Google Scholar
  93. 93.
    Toman, D.: Point-based temporal extensions of SQL and their efficient implementation. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Databases: Research and Practice. LNCS, vol. 1399, pp. 211–237. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0053704CrossRefGoogle Scholar
  94. 94.
    Tuma, P.A.: Implementing Historical Aggregates in TempIS. Ph.D. thesis, Wayne State University (1992)Google Scholar
  95. 95.
    Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12(3), 262–283 (2003)CrossRefGoogle Scholar
  96. 96.
    Zemke, F.: Whats new in SQL: 2011. SIGMOD Rec. 41(1), 67–73 (2012)CrossRefGoogle Scholar
  97. 97.
    Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2001 (2001)Google Scholar
  98. 98.
    Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In: Proceedings of the 18th International Conference on Data Engineering, ICDE 2002, pp. 103–113 (2002)Google Scholar
  99. 99.
    Zhou, X., Wang, F., Zaniolo, C.: Efficient temporal coalescing query support in relational database systems. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 676–686. Springer, Heidelberg (2006).  https://doi.org/10.1007/11827405_66CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael H. Böhlen
    • 1
  • Anton Dignös
    • 2
  • Johann Gamper
    • 2
  • Christian S. Jensen
    • 3
  1. 1.University of ZurichZurichSwitzerland
  2. 2.Free University of Bozen-BolzanoBolzanoItaly
  3. 3.Aalborg UniversityAalborgDenmark

Personalised recommendations