MR and CT Imaging Techniques of the Bowel

  • Flavius F. GuglielmoEmail author
  • Christopher G. Roth
  • Donald G. Mitchell


MR and CT enterography play an integral role in managing patients with a variety of gastrointestinal conditions such as inflammatory bowel disease (IBD), non-IBD enteritis, small bowel and mesenteric masses, intermittent or low-grade small bowel obstruction, obscure gastrointestinal bleeding, and celiac disease. However, to facilitate optimal interpretation, high-quality state-of-the-art imaging is necessary. In this chapter, we provide a detailed review of the techniques for performing both MR and CT enterography. The authors have implemented these MR and CT protocols on a variety of MR and CT clinical scanners.


MR enterography protocol MR enterography technique MR enterography pulse sequences CT enterography protocol CT enterography technique Enteric contrast agents Antiperistaltic agents Bowel peristalsis Enterography indications Crohn’s disease 


  1. 1.
    ACR–SAR–SPR practice parameter for the performance of computed tomography (CT) enterography 2015 (Resolution 18). American College of Radiology. Accessed 15 Jan 2018.Google Scholar
  2. 2.
    Grand DJ, Guglielmo FF, Al-Hawary MM. MR enterography in Crohn’s disease: current consensus on optimal imaging technique and future advances from the SAR Crohn’s disease-focused panel. Abdom Imaging. 2015;40(5):953–64.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    ACR–SAR–SPR practice parameter for the performance of magnetic resonance (MR) enterography 2015 (Resolution 9). American College of Radiology. Accessed 15 Jan 2018.Google Scholar
  4. 4.
    Costa-Silva L, Brandão AC. MR enterography for the assessment of small bowel diseases. Magn Reson Imaging Clin N Am. 2013;21(2):365–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Ilangovan R, Burling D, George A, Gupta A, Marshall M, Taylor S. CT enterography: review of technique and practical tips. Br J Radiol. 2012;85(1015):876–86.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Masselli G, Gualdi G. MR imaging of the small bowel. Radiology. 2012;264(2):333–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Fidler J. MR imaging of the small bowel. Radiol Clin N Am. 2007;45(2):317–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Bruining DH, Zimmermann EM, Loftus EV Jr, Sandborn WJ, Sauer CG, Strong SA, Society of Abdominal Radiology Crohn’s Disease-Focused Panel. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel Crohn’s disease. Radiology. 2018;286(3):776–99.CrossRefGoogle Scholar
  9. 9.
    Bruining DH, Zimmermann EM, Loftus EV, Sandborn WJ, Sauer CG, Strong SA, Society of Abdominal Radiology Crohn’s Disease-Focused Panel. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel Crohn’s disease. Gastroenterology. 2018;154(4):1172–94.CrossRefGoogle Scholar
  10. 10.
    Amzallag-Bellenger E, Oudjit A, Ruiz A, Cadiot G, Soyer PA, Hoeffel CC. Effectiveness of MR enterography for the assessment of small-bowel diseases beyond Crohn disease. Radiographics. 2012;32(5):1423–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Fidler JL, Guimaraes L, Einstein DM. MR imaging of the small bowel 1. Radiographics. 2009;29(6):1811–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Tolan DJ, Greenhalgh R, Zealley IA, Halligan S, Taylor SA. MR enterographic manifestations of small bowel Crohn disease. Radiographics. 2010;30(2):367–84.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Laghi A, Paolantonio P, Iafrate F, Altomari F, Miglio C, Passariello R. Oral contrast agents for magnetic resonance imaging of the bowel. Top Magn Reson Imaging. 2002;13(6):389–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Gee MS, Harisinghani MG. MRI in patients with inflammatory bowel disease. J Magn Reson Imaging. 2011;33(3):527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sinha R, Verma R, Verma S, Rajesh A. MR enterography of Crohn disease: part 1, rationale, technique, and pitfalls. Am J Roentgenol. 2011;197(1):76–9.CrossRefGoogle Scholar
  16. 16.
    Griffin N, Grant LA, Anderson S, Irving P, Sanderson J. Small bowel MR enterography: problem solving in Crohn’s disease. Insights imaging. 2012;3(3):251–63.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ajaj W, Goehde SC, Schneemann H, Ruehm SG, Debatin JF, Lauenstein TC. Oral contrast agents for small bowel MRI: comparison of different additives to optimize bowel distension. Eur Radiol. 2004;14(3):458–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SS, Kim AY, Yang S, Chung J, Kim SY, Park SH, et al. Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques. Radiology. 2009;251(3):751–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Fletcher JG. CT enterography technique: theme and variations. Abdom Imaging. 2009;34(3):283–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Huprich JE, Fletcher JG. CT enterography: principles, technique and utility in Crohn's disease. Eur J Radiol. 2009;69(3):393–7.CrossRefGoogle Scholar
  21. 21.
    Young BM, Fletcher JG, Booya F, Paulsen S, Fidler J, Johnson CD, et al. Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects. J Comput Assist Tomogr. 2008;32(1):32–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kolbe AB, Fletcher JG, Froemming AT, Sheedy SP, Koo CW, Pundi K, et al. Evaluation of patient tolerance and small-bowel distention with a new small-bowel distending agent for enterography. Am J Roentgenol. 2016;206(5):994–1002.CrossRefGoogle Scholar
  23. 23.
    Rimola J, Rodriguez S, Garcia-Bosch O, Ordas I, Ayala E, Aceituno M, et al. Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn's disease. Gut. 2009;58(8):1113–20.CrossRefGoogle Scholar
  24. 24.
    Koo CW, Shah-Patel LR, Baer JW, Frager DH. Cost-effectiveness and patient tolerance of low-attenuation oral contrast material: milk versus VoLumen. Am J Roentgenol. 2008;190(5):1307–13.CrossRefGoogle Scholar
  25. 25.
    Kuehle CA, Ajaj W, Ladd SC, Massing S, Barkhausen J, Lauenstein TC. Hydro-MRI of the small bowel: effect of contrast volume, timing of contrast administration, and data acquisition on bowel distention. Am J Roentgenol. 2006;187(4):W375–85.CrossRefGoogle Scholar
  26. 26.
    Siddiki HA, Fidler JL, Fletcher JG, Burton SS, Huprich JE, Hough DM, et al. Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn’s disease. Am J Roentgenol. 2009;193(1):113–21.CrossRefGoogle Scholar
  27. 27.
    Guglielmo FF, Kania LM, Ahmad HM, Roth CG, Mitchell DG. Interpreting body MRI cases: what you need to know to get started. Abdom Radiol (NY). 2016;41(11):2248–69.CrossRefGoogle Scholar
  28. 28.
    Tweedle MF, Kanal E, Muller R. Considerations in the selection of a new gadolinium-based contrast agent. Appl Radiol. 2014;43(5 Suppl):1–11.Google Scholar
  29. 29.
    Baker ME, Hara AK, Platt JF, Maglinte DD, Fletcher JG. CT enterography for Crohn’s disease: optimal technique and imaging issues. Abdom Imaging. 2015;40(5):938–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Schindera ST, Nelson RC, DeLong DM, Jaffe TA, Merkle EM, Paulson EK, et al. Multi–detector row CT of the small bowel: peak enhancement temporal window—initial experience. Radiology. 2007;243(2):438–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Hussain HK, Londy FJ, Francis IR, Nghiem HV, Weadock WJ, Gebremariam A, et al. Hepatic arterial phase MR imaging with automated bolus-detection three-dimensional fast gradient-recalled-echo sequence: comparison with test-bolus method. Radiology. 2003;226(2):558–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Mitchell D, Cohen M. MRI Principles. 2nd ed. Philadelphia: Elsevier; 2004.Google Scholar
  33. 33.
    Semelka RC, Helmberger TKG. Contrast agents for MR imaging of the liver. Radiology. 2001;218(1):27–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Vandenbroucke F, Mortele K, Tatli S, Pelsser V, Erturk S, De Mey J, et al. Noninvasive multidetector computed tomography enterography in patients with small-bowel Crohn's disease: is a 40-second delay better than 70 seconds? Acta Radiol. 2007;48(10):1052–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Zappa M, Stefanescu C, Cazals-Hatem D, Bretagnol F, Deschamps L, Attar A, et al. Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn's disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis. 2011;17(4):984–93.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Makanyanga J, Punwani S, Taylor SA. Assessment of wall inflammation and fibrosis in Crohn’s disease: value of T1-weighted gadolinium-enhanced MR imaging. Abdom Imaging. 2012;37(6):933–43.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Baker ME, Walter J, Obuchowski NA, Achkar J, Einstein D, Veniero JC, et al. Mural attenuation in normal small bowel and active inflammatory Crohn's disease on CT enterography: location, absolute attenuation, relative attenuation, and the effect of wall thickness. Am J Roentgenol. 2009;192(2):417–23.CrossRefGoogle Scholar
  38. 38.
    Grand DJ, Beland M, Harris A. Magnetic resonance enterography. Radiol Clin N Am. 2013;51(1):99–112.PubMedCrossRefGoogle Scholar
  39. 39.
    Booya F, Fletcher JG, Huprich JE, Barlow JM, Johnson CD, Fidler JL, et al. Active Crohn disease: CT findings and interobserver agreement for enteric phase CT enterography. Radiology. 2006;241(3):787–95.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Grand DJ, Kampalath V, Harris A, Patel A, Resnick MB, Machan J, et al. MR enterography correlates highly with colonoscopy and histology for both distal ileal and colonic Crohn’s disease in 310 patients. Eur J Radiol. 2012;81(5):e763–9.CrossRefGoogle Scholar
  41. 41.
    Grand DJ, Beland MD, Machan JT, Mayo-Smith WW. Detection of Crohn's disease: comparison of CT and MR enterography without anti-peristaltic agents performed on the same day. Eur J Radiol. 2012;81(8):1735–41.CrossRefGoogle Scholar
  42. 42.
    Ziech M, Bossuyt P, Laghi A, Lauenstein T, Taylor S, Stoker J. Grading luminal Crohn's disease: which MRI features are considered as important? Eur J Radiol. 2012;81(4):e467–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Chernish SM, Maglinte DD. Glucagon: common untoward reactions--review and recommendations. Radiology. 1990;177(1):145–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Gutzeit A, Binkert CA, Koh D, Hergan K, von Weymarn C, Graf N, et al. Evaluation of the anti-peristaltic effect of glucagon and hyoscine on the small bowel: comparison of intravenous and intramuscular drug administration. Eur Radiol. 2012;22(6):1186–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Park SH. DWI at MR enterography for evaluating bowel inflammation in Crohn disease. Am J Roentgenol. 2016;207(1):40–8.CrossRefGoogle Scholar
  46. 46.
    Kim KJ, Lee Y, Park SH, Kang BK, Seo N, Yang SK, et al. Diffusion-weighted MR enterography for evaluating Crohn's disease: how does it add diagnostically to conventional MR enterography? Inflamm Bowel Dis. 2015 Jan;21(1):101–9.CrossRefGoogle Scholar
  47. 47.
    Leyendecker JR, Bloomfeld RS, DiSantis DJ, Waters GS, Mott R, Bechtold RE. MR enterography in the management of patients with Crohn disease. Radiographics. 2009;29(6):1827–46.CrossRefGoogle Scholar
  48. 48.
    Cronin CG, Lohan DG, Mhuircheartaigh JN, McKenna D, Alhajeri N, Roche C, et al. MRI small-bowel follow-through: prone versus supine patient positioning for best small-bowel distention and lesion detection. Am J Roentgenol. 2008;191(2):502–6.CrossRefGoogle Scholar
  49. 49.
    Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MR imaging. Radiol Clin N Am. 2014;52(4):637–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Santillan CS. MR imaging techniques of the bowel. Magn Reson Imaging Clin N Am. 2014;22(1):1–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Patak MA, von Weymarn C, Froehlich JM. Small bowel MR imaging: 1.5 T versus 3T. Magn Reson Imaging Clin N Am. 2007;15(3):383–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Guglielmo FF, Mitchell DG, O’Kane PL, Deshmukh SP, Roth CG, Burach I, et al. Identifying decreased peristalsis of abnormal small bowel segments in Crohn’s disease using cine MR enterography: the frozen bowel sign. Abdom Imaging. 2015;40(5):1150–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Chavhan GB, Babyn PS, Jankharia BG, Cheng HM, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics. 2008;28(4):1147–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409–18.PubMedCrossRefGoogle Scholar
  55. 55.
    Rescinito G, Sirlin C, Cittadini G Jr. Body MRI artefacts: from image degradation to diagnostic utility. Radiol Med. 2009;114(1):18–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Wnorowski AM, Guglielmo FF, Mitchell DG. How to perform and interpret cine MR enterography. J Magn Reson Imaging. 2015;42(5):1180–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Froehlich JM, Waldherr C, Stoupis C, Erturk SM, Patak MA. MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging. Eur Radiol. 2010;20(8):1945–51.CrossRefGoogle Scholar
  58. 58.
    Girometti R, Zuiani C, Toso F, Brondani G, Sorrentino D, Avellini C, et al. MRI scoring system including dynamic motility evaluation in assessing the activity of Crohn’s disease of the terminal ileum. Acad Radiol. 2008;15(2):153–64.CrossRefGoogle Scholar
  59. 59.
    Menys A, Atkinson D, Odille F, Ahmed A, Novelli M, Rodriguez-Justo M, et al. Quantified terminal ileal motility during MR enterography as a potential biomarker of Crohn’s disease activity: a preliminary study. Eur Radiol. 2012;22(11):2494–501.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Buhmann-Kirchhoff S, Lang R, Kirchhoff C, Steitz HO, Jauch KW, Reiser M, et al. Functional cine MR imaging for the detection and mapping of intraabdominal adhesions: method and surgical correlation. Eur Radiol. 2008;18(6):1215–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Lang RA, Buhmann S, Hopman A, Steitz H, Lienemann A, Reiser MF, et al. Cine-MRI detection of intraabdominal adhesions: correlation with intraoperative findings in 89 consecutive cases. Surg Endosc. 2008;22(11):2455–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Ito K, Mitchell DG, Outwater EK, Szklaruk J, Sadek AG. Hepatic lesions: discrimination of nonsolid, benign lesions from solid, malignant lesions with heavily T2-weighted fast spin-echo MR imaging. Radiology. 1997;204(3):729–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Guglielmo FF, Mitchell DG, Roth CG, Deshmukh S. Hepatic MR imaging techniques, optimization, and artifacts. Magn Reson Imaging Clin N Am. 2014;22(3):263–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Udayasankar UK, Martin D, Lauenstein T, Rutherford R, Galloway J, Tudorascu D, et al. Role of spectral presaturation attenuated inversion-recovery fat-suppressed T2-weighted MR imaging in active inflammatory bowel disease. J Magn Reson Imaging. 2008;28(5):1133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Merkle EM, Nelson RC. Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing. Radiographics. 2006;26(5):1409–18.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Earls JP, Krinsky GA. Abdominal and pelvic applications of opposed-phase MR imaging. AJR Am J Roentgenol. 1997 Oct;169(4):1071–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ma J. Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med. 2004;52(2):415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rosenkrantz AB, Mannelli L, Kim S, Babb JS. Gadolinium-enhanced liver magnetic resonance imaging using a 2-point Dixon fat-water separation technique: impact upon image quality and lesion detection. J Comput Assist Tomogr. 2011;35(1):96–101.PubMedCrossRefGoogle Scholar
  69. 69.
    Koh D, Miao Y, Chinn R, Amin Z, Zeegen R, Westaby D, et al. MR imaging evaluation of the activity of Crohn’s disease. Am J Roentgenol. 2001;177(6):1325–32.CrossRefGoogle Scholar
  70. 70.
    Sinha R, Rajiah P, Ramachandran I, Sanders S, Murphy PD. Diffusion-weighted MR imaging of the gastrointestinal tract: technique, indications, and imaging findings. Radiographics. 2013;33(3):655–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Seo N, Park SH, Kim K, Kang B, Lee Y, Yang S, et al. MR enterography for the evaluation of small-bowel inflammation in Crohn disease by using diffusion-weighted imaging without intravenous contrast material: a prospective noninferiority study. Radiology. 2015;278(3):762–72.PubMedCrossRefGoogle Scholar
  72. 72.
    Oto A, Kayhan A, Williams JT, Fan X, Yun L, Arkani S, et al. Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging. 2011;33(3):615–24.CrossRefGoogle Scholar
  73. 73.
    Oto A, Zhu F, Kulkarni K, Karczmar GS, Turner JR, Rubin D. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn’s disease. Acad Radiol. 2009;16(5):597–603.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kiryu S, Dodanuki K, Takao H, Watanabe M, Inoue Y, Takazoe M, et al. Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn's disease. J Magn Reson Imaging. 2009;29(4):880–6.CrossRefGoogle Scholar
  75. 75.
    Tielbeek JA, Ziech ML, Li Z, Lavini C, Bipat S, Bemelman WA, et al. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn’s disease assessment with histopathology of surgical specimens. Eur Radiol. 2014;24(3):619–29.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rimola J, Alvarez-Cofiño A, Pérez-Jeldres T, Rodríguez S, Alfaro I, Ordás I, et al. Increasing efficiency of MRE for diagnosis of Crohn’s disease activity through proper sequence selection: a practical approach for clinical trials. Abdom Radiol (NY). 2017;42(12):2783–91.CrossRefGoogle Scholar
  77. 77.
    CT Enterography. Accessed 25 Nov 2017.
  78. 78.
    Paulsen SR, Huprich JE, Fletcher JG, Booya F, Young BM, Fidler JL, et al. CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases. Radiographics. 2006;26(3):641–57.PubMedCrossRefGoogle Scholar
  79. 79.
    Chatu S, Subramanian V, Pollok R. Meta-analysis: diagnostic medical radiation exposure in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35(5):529–39.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Desmond AN, O'Regan K, Curran C, McWilliams S, Fitzgerald T, Maher MM, et al. Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008;57(11):1524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Jaffe TA, Gaca AM, Delaney S, Yoshizumi TT, Toncheva G, Nguyen G, et al. Radiation doses from small-bowel follow-through and abdominopelvic MDCT in Crohn's disease. Am J Roentgenol. 2007;189(5):1015–22.CrossRefGoogle Scholar
  82. 82.
    Kroeker KI, Lam S, Birchall I, Fedorak RN. Patients with IBD are exposed to high levels of ionizing radiation through CT scan diagnostic imaging: a five-year study. J Clin Gastroenterol. 2011;45(1):34–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Peloquin JM, Pardi DS, Sandborn WJ, Fletcher JG, McCollough CH, Schueler BA, et al. Diagnostic ionizing radiation exposure in a population-based cohort of patients with inflammatory bowel disease. Am J Gastroenterol. 2008;103(8):2015–22.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I do it: managing radiation dose in CT. Radiology. 2014;273(3):657–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Del Gaizo AJ, Fletcher JG, Yu L, Paden RG, Spencer GC, Leng S, et al. Reducing radiation dose in CT enterography. Radiographics. 2013;33(4):1109–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Allen BC, Baker ME, Einstein DM, Remer EM, Herts BR, Achkar J, et al. Effect of altering automatic exposure control settings and quality reference mAs on radiation dose, image quality, and diagnostic efficacy in MDCT enterography of active inflammatory Crohn’s disease. Am J Roentgenol. 2010;195(1):89–100.CrossRefGoogle Scholar
  87. 87.
    Guimarães LS, Fletcher JG, Yu L, Huprich JE, Fidler JL, Manduca A, et al. Feasibility of dose reduction using novel denoising techniques for low kV (80 kV) CT enterography: optimization and validation. Acad Radiol. 2010;17(10):1203–10.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hough DM, Fletcher JG, Grant KL, Fidler JL, Yu L, Geske JR, et al. Lowering kilovoltage to reduce radiation dose in contrast-enhanced abdominal CT: initial assessment of a prototype automated kilovoltage selection tool. Am J Roentgenol. 2012;199(5):1070–7.CrossRefGoogle Scholar
  89. 89.
    Kaza RK, Platt JF, Al-Hawary MM, Wasnik A, Liu PS, Pandya A. CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction. Am J Roentgenol. 2012;198(5):1084–92.CrossRefGoogle Scholar
  90. 90.
    Gonzalez-Guindalini FD, Botelho MPF, Töre HG, Ahn RW, Gordon LI, Yaghmai V. MDCT of chest, abdomen, and pelvis using attenuation-based automated tube voltage selection in combination with iterative reconstruction: an intrapatient study of radiation dose and image quality. Am J Roentgenol. 2013;201(5):1075–82.CrossRefGoogle Scholar
  91. 91.
    Davenport MS, Cohan RH, Khalatbari S, Ellis JH. The challenges in assessing contrast-induced nephropathy: where are we now? Am J Roentgenol. 2014;202(4):784–9.PubMedCrossRefGoogle Scholar
  92. 92.
    James E. Huprich, John M. Barlow, Stephanie L. Hansel, Jeffrey A. Alexander, Jeff L. Fidler. Multiphase CT enterography evaluation of small-bowel vascular lesions. Am J Roentgenol. 2013;201(1):65–72.PubMedCrossRefGoogle Scholar
  93. 93.
    Soto JA, Park SH, Fletcher JG, Fidler JL. Gastrointestinal hemorrhage: evaluation with MDCT. Abdom Imaging. 2015;40(5):993–1009.PubMedCrossRefGoogle Scholar
  94. 94.
    Wells ML, Hansel SL, Bruining DH, Fletcher JG, Froemming AT, Barlow JM, et al. CT for evaluation of acute gastrointestinal bleeding. Radiographics. 2018;38(4):1089–107.PubMedCrossRefGoogle Scholar
  95. 95.
    Kim G, Soto JA, Morrison T. Radiologic assessment of gastrointestinal bleeding. Gastroenterol Clin North Am. 2018;47(3):501–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Flavius F. Guglielmo
    • 1
    Email author
  • Christopher G. Roth
    • 1
  • Donald G. Mitchell
    • 1
  1. 1.Department of RadiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations