Advertisement

Swarm Intelligence and IoT-Based Smart Cities: A Review

  • Ouarda Zedadra
  • Antonio Guerrieri
  • Nicolas Jouandeau
  • Giandomenico Spezzano
  • Hamid Seridi
  • Giancarlo Fortino
Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

Smart cities are complex and large distributed systems characterized by their heterogeneity, security, and reliability challenges. In addition, they are required to take into account several scalability, efficiency, safety, real-time responses, and smartness issues. All of this means that building smart city applications is extremely complex. Swarm Intelligence is a very promising paradigm to deal with such complex and dynamic systems. It presents robust, scalable and self-organized behaviors to deal with dynamic and fast changing systems. The intelligence of cities can be modeled as a swarm of digital telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors and tags (the sensory organs), and software (the knowledge and cognitive competence). In this chapter, swarm intelligence-based algorithms and existing swarm intelligence-based smart city solutions will be analyzed. Moreover, a swarm-based framework for smart cities will be presented. Then, a set of trends on how to use swarm intelligence in smart cities, in order to make them flexible and scalable, will be investigated.

Keywords

Swarm intelligence Swarm intelligence-based algorithms IoT Smart cities 

References

  1. 1.
    J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing (Kluwer Academic Publishers, Boston, 2001), pp. 187–219Google Scholar
  2. 2.
    R.S. Parpinelli, H.S. Lopes, New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)CrossRefGoogle Scholar
  4. 4.
    V. Angelakis, E. Tragos, H.C. Pöhls, A. Kapovits, Designing, Developing, and Facilitating Smart Cities (Springer International Publishing, Cham, 2017)CrossRefGoogle Scholar
  5. 5.
    G. Garofalo, A. Giordano, P. Piro, G. Spezzano, A. Vinci, A distributed real-time approach for mitigating CSO and flooding in urban drainage systems. J. Netw. Comput. Appl. 78, 30–42 (2017)CrossRefGoogle Scholar
  6. 6.
    O. Zedadra, C. Savaglio, N. Jouandeua, A. Guerrieri, H. Seridi, G. Fortino, Towards a reference architecture for swarm intelligence-based internet of things, in the Proc. of the 10th International Conference on Internet and Distributed Computing Systems (IDCS 2017) (Springer, December, Fiji, 2017), pp. 11–13Google Scholar
  7. 7.
    M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)Google Scholar
  8. 8.
    F. Cicirelli, A. Forestiero, A. Giordano, C. Mastroianni, Transparent and efficient parallelization of swarm algorithms. ACM Trans. Auton. Adapt. Syst. 11(2), 14:1–14:26 (2016)Google Scholar
  9. 9.
    D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  10. 10.
    H.A. Abbass, MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach, in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1 (IEEE, 2000), pp. 207–214Google Scholar
  11. 11.
    X.S. Yang, X. He, Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)Google Scholar
  12. 12.
    K.N. Krishnanand, D. Ghose, Detection of multiple source locations using a glowworm metaphor with applications to collective robotics, in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005 (SIS 2005), vol. 2005 (IEEE, 2005), pp. 84–91Google Scholar
  13. 13.
    K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)Google Scholar
  14. 14.
    R.C. Eberhart, J. Kennedy, Particle swarm optimization, in Proceedings of the International Conference on Neural Networks, Piscataway, vol. 1000, pp. 1942–1948 (1995)Google Scholar
  15. 15.
    X.S. Yang, S. Deb, Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330 (2010)Google Scholar
  16. 16.
    X.-S. Yang, A new metaheuristic bat-inspired algorithm. Stud. Comput. Intell. 284, 65–74 (2010)zbMATHGoogle Scholar
  17. 17.
    M. Eusuff, K. Lansey, F. Pasha, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    X. Li, J.-x. Qian, Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques. J. Circuit Syst. 1, 1–6 (2003)Google Scholar
  19. 19.
    C. Liu, X. Yan, C. Liu, W. Hua, The wolf colony algorithm and its application. Chin. J. Electron. 20(2), 212–216 (2011)Google Scholar
  20. 20.
    S.C. Chu, P.W. Tsai, Computational intelligence based on the behavior of cats. Int. J. Innov. Comput. Inf. Control 3(1), 163–173 (2007)Google Scholar
  21. 21.
    L.G. Anthopoulos, Understanding the smart city domain: a literature review, in Transforming City Governments for Successful Smart Cities (Springer, 2015), pp. 9–21Google Scholar
  22. 22.
    C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, P. Williams, Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)CrossRefGoogle Scholar
  23. 23.
    D. Toppeta, The smart city vision: how innovation and ICT can build smart, “livable”, sustainable cities. Innov. Knowl. Found. 5, 1–9 (2010)Google Scholar
  24. 24.
    A.C. Lundin, A.G. Ozkil, J. Schuldt-Jensen, Smart cities: a case study in waste monitoring and management. in Proceedings of the 50th Hawaii International Conference on System Sciences (2017)Google Scholar
  25. 25.
    A. Picon, Smart Cities: A Spatialised Intelligence (Wiley, 2015)Google Scholar
  26. 26.
    A. Medvedev, P. Fedchenkov, A. Zaslavsky, T. Anagnostopoulos, S. Khoruzhnikov, Waste management as an IoT-enabled service in smart cities, in Conference on Smart Spaces (Springer, 2015), pp. 104–115Google Scholar
  27. 27.
    J.M. Gutierrez, M. Jensen, M. Henius, T. Riaz, Smart waste collection system based on location intelligence. Procedia Comput. Sci. 61, 120–127 (2015)CrossRefGoogle Scholar
  28. 28.
    T. Anagnostopoulos, A. Zaslavsky, A. Medvedev, Robust waste collection exploiting cost efficiency of loT potentiality in smart cities, in 2015 International Conference on Recent Advances in Internet of Things (RIoT), pp. 7–9, Apr 2015Google Scholar
  29. 29.
    T. Anagnostopoulos, K. Kolomvatsos, C. Anagnostopoulos, A. Zaslavsky, S. Hadjiefthymiades, Assessing dynamic models for high priority waste collection in smart cities. J. Syst. Softw. 110, 178–192 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Medvedev, A. Zaslavsky, M. Indrawan-Santiago, P.D. Haghighi, A. Hassani, Storing and indexing IoT context for smart city applications, in Internet of Things, Smart Spaces, and Next Generation Networks and Systems (Springer, 2016), pp. 115–128Google Scholar
  31. 31.
    M. Aazam, M. St-Hilaire, C.-H. Lung, I. Lambadaris, Cloud-based smart waste management for smart cities, in 2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD) (IEEE, 2016), pp. 188–193Google Scholar
  32. 32.
    S. Lokuliyana, J.A.D.C. Anuradha Jayakody, L. Rupasinghe, S. Kandawala, IGOE IoT framework for waste collection optimization, in National Conference on Technology and Management (NCTM) (IEEE, 2017), pp. 12–16Google Scholar
  33. 33.
    Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, V. Prasanna, Cloud-based software platform for big data analytics in smart grids. Comput. Sci. Eng. 15(4), 38–47 (2013)CrossRefGoogle Scholar
  34. 34.
    L.A. Hurtado, P.H. Nguyen, W.L. Kling, Smart grid and smart building inter-operation using agent-based particle swarm optimization. Sustain. Energy Grids Netw. 2, 32–40 (2015)Google Scholar
  35. 35.
    J. Kane, B. Tang, Z. Chen, J. Yan, T. Wei, H. He, Q. Yang, Reflex-tree: a biologically inspired parallel architecture for future smart cities, in 2015 44th International Conference on Parallel Processing (IEEE, 2015), pp. 360–369Google Scholar
  36. 36.
    E. Asimakopoulou, N. Bessis, Buildings and crowds: forming smart cities for more effective disaster management, in 2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IEEE, 2011), pp. 229–234Google Scholar
  37. 37.
    B. Molina, C.E. Palau, G. Fortino, A. Guerrieri, C. Savaglio, Empowering smart cities through interoperable sensor network enablers, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), vol. 2014-Janua. (IEEE, 2014), pp. 7–12Google Scholar
  38. 38.
    A. Guerrieri, G. Fortino, A. Ruzzelli, G.M.P. O’Hare, A WSN-based building management framework to support energy-saving applications in buildings, in Advancements in Distributed Computing and Internet Technologies: Trends and Issues (IGI Global, 2012), pp. 258–273Google Scholar
  39. 39.
    G. Fortino, R. Gravina, A. Guerrieri, G. Di Fatta, Engineering large-scale body area networks applications, in Proceedings of the 8th International Conference on Body Area Networks (ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2013), pp. 363–369Google Scholar
  40. 40.
    J. Cano, C.E. Jimenez, S. Zoughbi, A smart city model based on citizen-sensors, in 2015 IEEE First International Smart Cities Conference (ISC2), vol. 81 (IEEE, 2015), pp. 1–2Google Scholar
  41. 41.
    A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of Things for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)Google Scholar
  42. 42.
    M.S. Jamil, M.A. Jamil, A. Mazhar, A. Ikram, A. Ahmed, U. Munawar, Smart environment monitoring system by employing wireless sensor networks on vehicles for pollution free smart cities. Procedia Eng. 107, 480–484 (2015)Google Scholar
  43. 43.
    V.C.C. Roza, O.A. Postolache, Citizen emotion analysis in smart city, in 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, 2016), pp. 1–6Google Scholar
  44. 44.
    J. Shah, B. Mishra, IoT enabled environmental monitoring system for smart cities, in 2016 International Conference on Internet of Things and Applications (IOTA) (IEEE, 2016), pp. 383–388Google Scholar
  45. 45.
    A. Giordano, G. Spezzano, A. Vinci, Smart agents and fog computing for smart city applications, in International Conference on Smart Cities (2016, June), pp. 137-146Google Scholar
  46. 46.
    S. Kumar, S.K. Singh, Monitoring of pet animal in smart cities using animal biometrics. Future Gener. Comput. Syst. (2016)Google Scholar
  47. 47.
    F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, An edge-based platform for dynamic smart city applications. Future Gener. Comput. Syst. 76, 106–118 (2017)CrossRefGoogle Scholar
  48. 48.
    F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, O. Briante, G. Ruggeri, iSapiens: a platform for social and pervasive smart environments, in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (IEEE, 2016), pp. 365–370Google Scholar
  49. 49.
    F. Cicirelli, A. Guerrieri, G. Spezzano, A. Vinci, O. Briante, A. Iera, G. Ruggeri, Edge computing and social internet of things for large-scale smart environments development. IEEE Internet of Things J. 4662(c), 1–1 (2017)Google Scholar
  50. 50.
    F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, A. Vinci, Metamodeling of smart environments: from design to implementation. Adv. Eng. Inform. 33, 274–284 (2017)CrossRefGoogle Scholar
  51. 51.
    F. Cicirelli, G. Fortino, A. Mercuri, A. Guerrieri, G. Spezzano, A. Vinci, Exploiting the sem framework for modeling smart cities, in International Conference on Internet and Distributed Computing Systems (Springer, 2017)Google Scholar
  52. 52.
    M. Alhussein, Monitoring Parkinson’s disease in smart cities. IEEE Access 5(c), 19835–19841 (2017)Google Scholar
  53. 53.
    J.-P. Calbimonte, J. Eberle, K. Aberer, Toward self-monitoring smart cities: the OpenSense2 approach. Informatik-Spektrum 40(1), 75–87 (2017)CrossRefGoogle Scholar
  54. 54.
    O. Cosido, C. Loucera, A. Iglesias, Automatic calculation of bicycle routes by combining meta-heuristics and GIS techniques within the framework of smart cities, in 2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE) (IEEE, 2013), pp. 1–6Google Scholar
  55. 55.
    M. Patrascu, M. Dragoicea, A. Ion, Emergent intelligence in agents: a scalable architecture for smart cities, in 2014 18th International Conference on System Theory, Control and Computing (ICSTCC) (IEEE, 2014), pp. 181–186Google Scholar
  56. 56.
    D.H. Stolfi, E. Alba, Red Swarm: reducing travel times in smart cities by using bio-inspired algorithms. Appl. Soft Comput. 24, 181–195 (2014)CrossRefGoogle Scholar
  57. 57.
    D.H. Stolfi, E. Alba, Eco-friendly reduction of travel times in European smart cities, in Proceedings of the 2014 Conference on Genetic and Evolutionary Computation (GECCO’14) (ACM Press, New York, USA, 2014), pp. 1207–1214Google Scholar
  58. 58.
    P. Chamoso, F. De Prieta, F. De Paz, J.M. Corchado, Swarm agent-based architecture suitable for internet of things and smartcities, in Advances in Intelligent Systems and Computing, vol. 373 (Springer International Publishing, Cham, 2015)Google Scholar
  59. 59.
    P. Chamoso, F. De La Prieta, Swarm-based smart city platform: a traffic application. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(2), 89 (2015)Google Scholar
  60. 60.
    Z. Li, M. Shahidehpour, S. Bahramirad, A. Khodaei, Optimizing traffic signal settings in smart cities. IEEE Trans. Smart Grid 8(5), 2382–2393 (2017)Google Scholar
  61. 61.
    J. Liu, X. Yu, Z. Xu, K.-K.R. Choo, L. Hong, X. Cui, A cloud-based taxi trace mining framework for smart city. Softw. Pract. Exp. 47(8), 1081–1094 (2017)Google Scholar
  62. 62.
    G.-J. Horng, The adaptive recommendation mechanism for distributed parking service in smart city. Wirel. Pers. Commun. 80(1), 395–413 (2015)Google Scholar
  63. 63.
    L. Baroffio, L. Bondi, M. Cesana, A.E. Redondi, M. Tagliasacchi, A visual sensor network for parking lot occupancy detection in smart cities, in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (IEEE, 2015), pp. 745–750Google Scholar
  64. 64.
    M. Amin, R. Kawaguchi, N. Shirmohammad, M. Sato, BlueParking, in Proceedings of the Second International Conference on IoT in Urban Space - Urb-IoT ’16, vol. 24–25-May (ACM Press, New York, New York, USA, 2016), pp. 86–88Google Scholar
  65. 65.
    A. Yavari, P.P. Jayaraman, D. Georgakopoulos, Contextualised service delivery in the internet of things: parking recommender for smart cities, in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (IEEE, 2016), pp. 454–459Google Scholar
  66. 66.
    R. Grodi, D.B. Rawat, F. Rios-Gutierrez, Smart parking: parking occupancy monitoring and visualization system for smart cities, in SoutheastCon 2016 (IEEE, 2016), pp. 1–5Google Scholar
  67. 67.
    I. Aydin, M. Karakose, E. Karakose, A navigation and reservation based smart parking platform using genetic optimization for smart cities, in 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG) (IEEE, 2017), pp. 120–124Google Scholar
  68. 68.
    H. Chourabi, T. Nam, S. Walker, J.R. Gil-Garcia, S. Mellouli, K. Nahon, T.A. Pardo, H.J. Scholl, Understanding smart cities: an integrative framework, in 2012 45th Hawaii International Conference on System Sciences (IEEE, 2012), pp. 2289–2297Google Scholar
  69. 69.
    N. Bicocchi, A. Cecaj, D. Fontana, M. Mamei, A. Sassi, F. Zambonelli, Collective awareness for Human-ICT collaboration in smart cities, in 22nd IEEE International WETICE Conference (WETICE, 2013, June), pp. 3-8, IEEEGoogle Scholar
  70. 70.
    L. Sanchez, L. Muñoz, J.A. Galache, P. Sotres, J.R. Santana, V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, D. Pfisterer, SmartSantander: IoT experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)Google Scholar
  71. 71.
    F. Zambonelli, Engineering self-organizing urban superorganisms. Eng. Appl. Artif. Intell. 41, 325–332 (2015)Google Scholar
  72. 72.
    J. Muvuna, T. Boutaleb, S.B. Mickovski, K.J. Baker, Systems engineering approach to design and modelling of smart cities, in International Conference for Students on Applied Engineering (ICSAE) (IEEE, 2016), 437–440Google Scholar
  73. 73.
    N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, S. Mahmoud, SmartCityWare: a service-oriented middleware for cloud and fog enabled smart city services. IEEE Access, 5(c), 17576–17588 (2017)Google Scholar
  74. 74.
    C.A. Kamienski, F.F. Borelli, G.O. Biondi, I. Pinheiro, I.D. Zyrianoff, M. Jentsch, Context design and tracking for IoT-based energy management in smart cities. IEEE Internet of Things J. 5(2), 687–695 (2018)Google Scholar
  75. 75.
    L. van Zoonen, Privacy concerns in smart cities. Gov. Inf. Q. 33(3), 472–480 (2016)Google Scholar
  76. 76.
    Y. Li, W. Dai, Z. Ming, M. Qiu, Privacy protection for preventing data over-collection in smart city. IEEE Trans. Comput. 65(5), 1339–1350 (2016)Google Scholar
  77. 77.
    G. Fortino, D. Grimaldi, L. Nigro, Multicast control of mobile measurement systems. IEEE Trans. Instrum. Meas. 47(5), 1149–1154 (1998)Google Scholar
  78. 78.
    G. Fortino, W. Russo, Using P2P, GRID and agent technologies for the development of content distribution networks. Future Gener. Comput. Syst. 24(3), 180–190 (2008)Google Scholar
  79. 79.
    G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo, C. Savaglio, Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput. Appl. 81, 74–84 (2017)Google Scholar
  80. 80.
    G. Fortino, A. Garro, W. Russo, An integrated approach for the development and validation of multi-agent systems. Int. J. Comput. Syst. Sci. Eng. 20(4), 259–271 (2005)Google Scholar
  81. 81.
    F. Aiello, G. Fortino, A. Guerrieri, R. Gravina, Maps: a mobile agent platform for WSNs based on java sun spots, in Proceedings of ATSM (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Ouarda Zedadra
    • 1
  • Antonio Guerrieri
    • 2
  • Nicolas Jouandeau
    • 3
  • Giandomenico Spezzano
    • 2
  • Hamid Seridi
    • 1
  • Giancarlo Fortino
    • 2
    • 4
  1. 1.LabSTIC8 may 1945 UniversityGuelmaAlgeria
  2. 2.CNR - National Research Council of Italy - Institute for High Performance Computing and Networking (ICAR)RendeItaly
  3. 3.LIASDParis 8 UniversitySaint DenisFrance
  4. 4.DIMESUniversità della CalabriaRendeItaly

Personalised recommendations