Advertisement

Immersogeometric Analysis of Bioprosthetic Heart Valves, Using the Dynamic Augmented Lagrangian Method

  • Ming-Chen HsuEmail author
  • David Kamensky
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

In the mid-2010s, we began applying a combination of isogeometric analysis and immersed boundary methods to the problem of bioprosthetic heart valve (BHV) fluid–structure interaction (FSI). This chapter reviews how our research on BHV FSI (1) crystallized the emerging concept of immersogeometric analysis, (2) introduced a new semi-implicit numerical method for weakly enforcing constraints in time dependent problems, which we refer to as the dynamic augmented Lagrangian approach, and (3) clarified the important role of mass conservation in immersed FSI analysis. We illustrate these contributions with selected numerical results and discuss future improvements to, and applications of, the computational FSI techniques we have developed.

Notes

Acknowledgements

The work summarized in this chapter was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health (NIH/NHLBI) under award number R01HL129077. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this chapter.

References

  1. 1.
    F. J. Schoen and R. J. Levy. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg., 79(3):1072–1080, 2005.CrossRefGoogle Scholar
  2. 2.
    P. Pibarot and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation, 119(7):1034–1048, 2009.CrossRefGoogle Scholar
  3. 3.
    J. S. Soares, K. R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, and M. S. Sacks. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: Characterization, simulation, and performance. Cardiovascular Engineering and Technology, 7(4):309–351, 2016.CrossRefGoogle Scholar
  4. 4.
    M. J. Thubrikar, J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg., 86(1):115–125, Jul 1983.Google Scholar
  5. 5.
    R. F. Siddiqui, J. R. Abraham, and J. Butany. Bioprosthetic heart valves: modes of failure. Histopathology, 55:135–144, 2009.CrossRefGoogle Scholar
  6. 6.
    W. Sun, A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. Journal of Biomechanical Engineering, 127(6):905–914, 2005.CrossRefGoogle Scholar
  7. 7.
    F. Auricchio, M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Computer Methods in Biomechanics and Biomedical Engineering, 17(3):277–285, 2014.CrossRefGoogle Scholar
  8. 8.
    H. Kim, J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Annals of Biomedical Engineering, 36(2):262–275, 2008.CrossRefGoogle Scholar
  9. 9.
    T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29:329–349, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 33:689–723, 1982.zbMATHCrossRefGoogle Scholar
  11. 11.
    J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian–Eulerian methods. In Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 14. John Wiley & Sons, 2004.Google Scholar
  12. 12.
    T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering, 94(3):339–351, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering, 94(3):353–371, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. A. Johnson and T. E. Tezduyar. Parallel computation of incompressible flows with complex geometries. International Journal for Numerical Methods in Fluids, 24:1321–1340, 1997.zbMATHCrossRefGoogle Scholar
  15. 15.
    T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Massively parallel finite element computation of 3D flows – mesh update strategies in computation of moving boundaries and interfaces. In A. Ecer, J. Hauser, P. Leca, and J. Periaux, editors, Parallel Computational Fluid Dynamics – New Trends and Advances, pages 21–30. Elsevier, 1995.Google Scholar
  16. 16.
    A. A. Johnson and T. E. Tezduyar. 3D simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145:301–321, 1997.zbMATHCrossRefGoogle Scholar
  17. 17.
    A. A. Johnson and T. E. Tezduyar. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23:130–143, 1999.zbMATHCrossRefGoogle Scholar
  18. 18.
    K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time interface-tracking with topology change (ST-TC). Computational Mechanics, 54:955–971, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time fluid mechanics computation of heart valve models. Computational Mechanics, 54:973–986, 2014.zbMATHCrossRefGoogle Scholar
  20. 20.
    K. Takizawa, T. E. Tezduyar, T. Terahara, and T. Sasaki. Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Computers & Fluids, 158:176–188, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    K. Takizawa, T. E. Tezduyar, T. Terahara, and T. Sasaki. Heart valve flow computation with the space–time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In P. Wriggers and T. Lenarz, editors, Biomedical Technology: Modeling, Experiments and Simulation, Lecture Notes in Applied and Computational Mechanics, pages 77–99. Springer International Publishing, 2018.Google Scholar
  22. 22.
    C. S. Peskin. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10(2):252–271, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–261, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    F. Sotiropoulos and X. Yang. Immersed boundary methods for simulating fluid–structure interaction. Progress in Aerospace Sciences, 65:1–21, 2014.CrossRefGoogle Scholar
  25. 25.
    D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R. Hughes. An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 249–252:116–150, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization parameters. International Journal for Numerical Methods in Fluids, 43:555–575, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T. E. Tezduyar. Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Computational Mechanics, 46:31–41, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    J. de Hart. Fluid–Structure Interaction in the Aortic Heart Valve: a three-dimensional computational analysis. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2002.Google Scholar
  29. 29.
    J. De Hart, G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36:103–112, 2003.CrossRefGoogle Scholar
  30. 30.
    J. De Hart, F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of Biomechanics, 36:699–712, 2003.CrossRefGoogle Scholar
  31. 31.
    R. van Loon. A 3D method for modelling the fluid–structure interaction of heart valves. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2005.Google Scholar
  32. 32.
    R. van Loon, P. D. Anderson, and F. N. van de Vosse. A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. Journal of Computational Physics, 217:806–823, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    R. van Loon. Towards computational modelling of aortic stenosis. International Journal for Numerical Methods in Biomedical Engineering, 26:405–420, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    F. P. T. Baaijens. A fictitious domain/mortar element method for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 35(7):743–761, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    B. E. Griffith. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. International Journal for Numerical Methods in Biomedical Engineering, 28(3):317–345, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    I. Borazjani. Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 257:103–116, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    L. Ge and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225(2):1782–1809, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    I. Borazjani, L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227(16):7587–7620, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    A. Gilmanov, T. B. Le, and F. Sotiropoulos. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. Journal of Computational Physics, 300:814–843, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    A. Gilmanov and F. Sotiropoulos. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theoretical and Computational Fluid Dynamics, 30(1):67–85, 2016.CrossRefGoogle Scholar
  41. 41.
    LS-DYNA Finite Element Software: Livermore Software Technology Corp. http://www.lstc.com/products/ls-dyna. Accessed 30 April 2016.
  42. 42.
    G. G. Chew, I. C. Howard, and E. A. Patterson. Simulation of damage in a porcine prosthetic heart valve. Journal of Medical Engineering & Technology, 23(5):178–189, 1999.CrossRefGoogle Scholar
  43. 43.
    C. J. Carmody, G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 39:158–169, 2006.CrossRefGoogle Scholar
  44. 44.
    F. Sturla, E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Medical Engineering and Physics, 35:1721–1730, 2013.CrossRefGoogle Scholar
  45. 45.
    W. Wu, D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, L. Petrini, G. Pennati, G. Dubini, U. Steinseifer, S. Sonntag, M. Kuetting, and F. Migliavacca. Fluid–structure interaction model of a percutaneous aortic valve: Comparison with an in vitro test and feasibility study in a patient-specific case. Annals of Biomedical Engineering, 44(2):590–603, 2016.CrossRefGoogle Scholar
  46. 46.
    R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1):32–74, 1928.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 11:215–234, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    A. E. J. Bogaers, S. Kok, B. D. Reddy, and T. Franz. Quasi-Newton methods for implicit black-box FSI coupling. Computer Methods in Applied Mechanics and Engineering, 279(0):113–132, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    E. H. van Brummelen. Added mass effects of compressible and incompressible flows in fluid–structure interaction. Journal of Applied Mechanics, 76:021206, 2009.CrossRefGoogle Scholar
  50. 50.
    C. Michler, H. van Brummelen, and R. de Borst. An investigation of interface-GMRES(R) for fluid–structure interaction problems with flutter and divergence. Computational Mechanics, 47(1):17–29, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    M. Astorino, J.-F. Gerbeau, O. Pantz, and K.-F. Traoré. Fluid–structure interaction and multi-body contact: Application to aortic valves. Computer Methods in Applied Mechanics and Engineering, 198:3603–3612, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    K. Cao, M. Bukač, and P. Sucosky. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Computer Methods in Biomechanics and Biomedical Engineering, 19(6):603–613, 2016.CrossRefGoogle Scholar
  53. 53.
    T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    J. A. Evans, Y. Bazilevs, I. Babus̆ka, and T. J. R. Hughes. n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198:1726–1741, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, 199(17–20):1143–1152, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    A. Buffa, J. Rivas, G. Sangalli, and R. Vásquez. Isogeometric discrete differential forms in three dimensions. SIAM Journal on Numerical Analysis, 49(2):814–844, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff. The role of continuity in residual-based variational multiscale modeling of turbulence. Computational Mechanics, 41:371–378, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    J. A. Evans. Divergence-free B-spline Discretizations for Viscous Incompressible Flows. Ph.D. thesis, University of Texas at Austin, Austin, Texas, United States, 2011.Google Scholar
  60. 60.
    J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences, 23(08):1421–1478, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198:3902–3914, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München, 2011.Google Scholar
  63. 63.
    N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.U. Bletzinger, Y. Bazilevs, and T. Rabczuk. Rotation-free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 200:3410–3424, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    J. Kiendl, M.-C. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 291:280–303, 2015.MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes. Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering, 199:357–373, 2010.zbMATHCrossRefGoogle Scholar
  66. 66.
    L. De Lorenzis, İ. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87:1278–1300, 2011.MathSciNetzbMATHGoogle Scholar
  67. 67.
    S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, and A. Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    M. A. Scott. T-splines as a Design-Through-Analysis Technology. PhD thesis, The University of Texas at Austin, August 2011.Google Scholar
  69. 69.
    T. W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, and T. Lyche. T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3):276–283, 2004.CrossRefGoogle Scholar
  70. 70.
    T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCS. ACM Transactions on Graphics, 22(3):477–484, 2003.CrossRefGoogle Scholar
  71. 71.
    E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, and A. Düster. Geometric modeling, isogeometric analysis and the finite cell method. Computer Methods in Applied Mechanics and Engineering, 249–252:104–115, 2012.zbMATHCrossRefGoogle Scholar
  72. 72.
    M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank. Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. International Journal for Numerical Methods in Engineering, 95:811–846, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Computer Methods in Applied Mechanics and Engineering, 269:46–731, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    D. Schillinger and M. Ruess. The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Archives of Computational Methods in Engineering, 22(3):391–455, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method. Computational Mechanics, 50(4):445–478, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.Google Scholar
  77. 77.
    D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Communications in Partial Differential Equations, 32(9):1345–1371, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Y. Bazilevs, M.-C. Hsu, and M. A. Scott. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 249–252:28–41, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden, and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computational Mechanics, 48:277–291, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester, 2000.zbMATHGoogle Scholar
  82. 82.
    T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, and Y. Bazilevs. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering, 316:859–879, 2017.MathSciNetCrossRefGoogle Scholar
  83. 83.
    T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. B. Quincy. The variational multiscale method–A paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 3rd ed. Springer, 2008.Google Scholar
  85. 85.
    J. A. Evans and T. J. R. Hughes. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numerische Mathematik, 123:259–290, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.MathSciNetCrossRefGoogle Scholar
  87. 87.
    J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer-Verlag, New York, 1997.zbMATHCrossRefGoogle Scholar
  89. 89.
    A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, 196:4853–4862, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–790, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. Journal of Computational Physics, 229:3402–3414, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions. Computational Mechanics, 50:499–511, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    H. J. C. Barbosa and T. J. R. Hughes. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition. Computer Methods in Applied Mechanics and Engineering, 85(1):109–128, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–75, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Computational Mechanics, 43:3–37, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4(5):303–320, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    M. J. D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher, editor, Optimization, pages 283–298. Academic Press, New York, 1969.Google Scholar
  100. 100.
    D. Kamensky, J. A. Evans, and M.-C. Hsu. Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Communications in Computational Physics, 18:1147–1180, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 135(2):118–125, 1967.zbMATHCrossRefGoogle Scholar
  102. 102.
    D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics, 105(2):354–366, 1993.zbMATHCrossRefGoogle Scholar
  103. 103.
    L. B. Wahlbin. Local behavior in finite element methods. In P. G. Ciarlet and J. L. Lions, editors, Finite Element Methods (Part 1), volume 2 of Handbook of Numerical Analysis, pages 353–522. North-Holland, 1991.Google Scholar
  104. 104.
    T.-C. Tuan and D. B. Goldstein. Direct numerical simulation of arrays of microjets to manipulate near wall turbulence. Technical Report CAR-96-3, U. T. Austin Center for Aerodynamics Research, 2011.Google Scholar
  105. 105.
    D. B. Goldstein and T.-C. Tuan. Secondary flow induced by riblets. Journal of Fluid Mechanics, 363:115–151, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    D. B. Goldstein. DNS for new applications of surface textures and MEMS actuators for turbulent boundary layer control - FINAL REPORT. Technical Report AFRL-SR-AR-TR-07-0363, AFSOR, 2006.Google Scholar
  107. 107.
    K. Stephani and D. Goldstein. DNS study of transient disturbance growth and bypass transition due to realistic roughness. In Proceedings of 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-585, Orlando, Florida, 2009.Google Scholar
  108. 108.
    J. S. Strand and D. B. Goldstein. Direct numerical simulations of riblets to constrain the growth of turbulent spots. Journal of Fluid Mechanics, 668:267–292, 2011.zbMATHCrossRefGoogle Scholar
  109. 109.
    C. J. Doolittle, S. D. Drews, and D. B. Goldstein. Near-field flow structures about subcritical surface roughness. Physics of Fluids, 26:124106, 2014.CrossRefGoogle Scholar
  110. 110.
    E. M. Saiki and S. Biringen. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, 123(2):450–465, 1996.zbMATHCrossRefGoogle Scholar
  111. 111.
    E. M. Saiki and S. Biringen. Spatial numerical simulation of boundary layer transition: effects of a spherical particle. Journal of Fluid Mechanics, 345:133–164, 1997.zbMATHCrossRefGoogle Scholar
  112. 112.
    W.-X. Huang, S. J. Shin, and H. J. Sung. Simulation of flexible filaments in a uniform flow by the immersed boundary method. Journal of Computational Physics, 226(2):2206–2228, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    S. J. Shin, W.-X. Huang, and H. J. Sung. Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. International Journal for Numerical Methods in Fluids, 58(3):263–286, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    W.-X. Huang and H. J. Sung. An immersed boundary method for fluid–flexible structure interaction. Computer Methods in Applied Mechanics and Engineering, 198(33–36):2650–2661, 2009.zbMATHCrossRefGoogle Scholar
  115. 115.
    J. Ryu, S. G. Park, B. Kim, and H. J. Sung. Flapping dynamics of an inverted flag in a uniform flow. Journal of Fluids and Structures, 57:159–169, 2015.CrossRefGoogle Scholar
  116. 116.
    E. Uddin, W.-X. Huang, and H. J. Sung. Actively flapping tandem flexible flags in a viscous flow. Journal of Fluid Mechanics, 780:120–142, 10 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    M. Souli, Y. Sofiane, and L. Olovsson. ALE and fluid/structure interaction in LS-DYNA. In Proceedings of Emerging Technology in Fluids, Structures, and Fluid–Structure Interactions. ASME, 2004.Google Scholar
  118. 118.
    M. Souli, N. Capron, and U. Khan. Fluid structure interaction and airbag ALE for out of position. In Proceedings of the ASME Pressure Vessels and Piping Conference. AMSE, 2005.Google Scholar
  119. 119.
    M. Souli, J. Wang, I. Do, and C. Hao. ALE and fluid structure interaction in LS-DYNA. In Proceedings of the 8th International LS-DYNA Users Conference, 2011.Google Scholar
  120. 120.
    A. Haufe, K. Weimar, and U. Göhner. Advanced airbag simulation using fluid-structure-interaction and the Eluerian method in LS-DYNA. In Proceedings of the LS-DYNA Anwenderforum, 2004.Google Scholar
  121. 121.
    A.J. Gil, A. Arranz Carreño, J. Bonet, and O. Hassan. An enhanced immersed structural potential method for fluid–structure interaction. Journal of Computational Physics, 250:178–205, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    C. Hesch, A. J. Gil, A. Arranz Carreño, and J. Bonet. On continuum immersed strategies for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 247–248:51–64, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    T. Wick. Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity. Computational Mechanics, 53(1):29–43, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    C. Kadapa, W. G. Dettmer, and D. Perić. A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-spline grids. Computer Methods in Applied Mechanics and Engineering, 301:1–27, 2016.MathSciNetCrossRefGoogle Scholar
  125. 125.
    T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Parallel finite-element computation of 3D flows. Computer, 26(10):27–36, 1993.zbMATHCrossRefGoogle Scholar
  126. 126.
    A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 119:73–94, 1994.zbMATHCrossRefGoogle Scholar
  127. 127.
    K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid–structure interactions with large displacements. Journal of Applied Mechanics, 70:58–63, 2003.zbMATHCrossRefGoogle Scholar
  128. 128.
    K. Stein, T. E. Tezduyar, and R. Benney. Automatic mesh update with the solid-extension mesh moving technique. Computer Methods in Applied Mechanics and Engineering, 193:2019–2032, 2004.zbMATHCrossRefGoogle Scholar
  129. 129.
    Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester, 2013.zbMATHCrossRefGoogle Scholar
  130. 130.
    M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Computational Mechanics, 54:1055–1071, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids, 64:1201–1218, 2010.zbMATHCrossRefGoogle Scholar
  132. 132.
    M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M. S. Sacks. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Computational Mechanics, 55:1211–1225, 2015.zbMATHCrossRefGoogle Scholar
  133. 133.
    Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199:229–263, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    V. L. Huynh, T. Nguyen, H. L. Lam, X. G. Guo, and R. Kafesjian. Cloth-covered stents for tissue heart valves, 2003. US Patent 6,585,766.Google Scholar
  135. 135.
    D. K. Hildebrand. Design and evaluation of a novel pulsatile bioreactor for biologically active heart valves. Master’s thesis, University of Pittsburgh, Pittsburgh, United States, 2003.Google Scholar
  136. 136.
    A. K. S. Iyengar, H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Annals of Biomedical Engineering, 29(11):963–973, 2001.CrossRefGoogle Scholar
  137. 137.
    M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L. Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.MathSciNetCrossRefGoogle Scholar
  138. 138.
    C. Wang, M. C. H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs. Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis. Computers & Fluids, 142:3–14, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    D. Kamensky, J. A. Evans, M.-C. Hsu, and Y. Bazilevs. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Computers & Mathematics with Applications, 74:2068–2088, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Y. Yu, D. Kamensky, M.-C. Hsu, X. Y. Lu, Y. Bazilevs, and T. J. R. Hughes. Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to immersogeometric fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 2018. https://doi.org/10.1142/S0218202518500537.
  141. 141.
    H. Casquero, Y. Zhang, C. Bona-Casas, L. Dalcin and H. Gomez. Non-body-fitted fluid–structure interaction: Divergence-conforming B splines, fully-implicit dynamics, and variational formulation. Journal of Computational Physics, 2018. https://doi.org/10.1016/j.jcp.2018.07.020.MathSciNetCrossRefGoogle Scholar
  142. 142.
    H. Casquero, C. Bona-Casas, and H. Gomez. A NURBS-based immersed methodology for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 284:943–970, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    H. Casquero, L. Liu, C. Bona-Casas, Y. Zhang, and H. Gomez. A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured t-splines. International Journal for Numerical Methods in Engineering, 105(11):855–880, 2015.MathSciNetCrossRefGoogle Scholar
  144. 144.
    H. Casquero, C. Bona-Casas, and H. Gomez. NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Computer Methods in Applied Mechanics and Engineering, 316:646–667, 2017.MathSciNetCrossRefGoogle Scholar
  145. 145.
    A.F. Sarmiento, A.M.A. Côrtes, D.A. Garcia, L. Dalcin, N. Collier, and V.M. Calo. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science, 18(Supplement C):117–131, 2017.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations