Vascular Intervention: From Angioplasty to Bioresorbable Vascular Scaffold

  • Fengyi Du
  • Jiangbing ZhouEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)


Coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. Clinically, CAD can be potentially managed through surgical artery bypass. However, due to the highly invasive nature, surgical intervention has been gradually replaced by percutaneous transluminal coronary angioplasty and recently by percutaneous coronary revascularization using metallic stents. However, the permanent presence of metallic scaffolds inevitably impairs arterial physiology and may induce a variety of adverse effects, such as inflammation, restenosis, thrombosis, and neoatherosclerosis. To address these limitations, revascularization using bioresorbable vascular scaffolds (BVSs) has emerged as the most promising approach. After angioplasty, BVSs provide temporarily mechanical support and are completely resorbed over defined time. This transient nature allows favorable arterial remodeling and avoids thrombosis and in-stent restenosis. However, the theoretical advantages of BVSs have yet to be demonstrated. In this chapter, we first review the evolution of nonsurgical vascular intervention approaches over the past few decades. Next, we discuss the current status of BVS development and propose potential approaches to addressing the limitations associated with the current BVSs.


  1. Abizaid A (2016a) Desolve Nx, Cx and Amity: unique properties and results from 150 μm to 120 μm. Presented at TCT. November 1, 2016Google Scholar
  2. Abizaid A (2016b) FANTOM II: six-month and nine-month clinical and angiographic results with a radiopaque desaminotyrosine polycarbonate-based sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease. Presented at TCT. November 1, 2016Google Scholar
  3. Boix V (2003) Polylactic acid implants. A new smile for lipoatrophic faces? AIDS 17(17):2533–2535CrossRefPubMedCentralGoogle Scholar
  4. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4(9):710–720CrossRefPubMedCentralGoogle Scholar
  5. Claessen BE, Beijk MA, Legrand V, Ruzyllo W, Manari A, Varenne O, Suttorp MJ, Tijssen JG, Miquel-Hebert K, Veldhof S, Henriques JP, Serruys PW, Piek JJ (2009) Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions: the SPIRIT II trial. Circ Cardiovasc Interv 2(4):339–347CrossRefPubMedCentralGoogle Scholar
  6. Colombo A (2016) FORTITUDE: Nine-month clinical, angiographic, and OCT results with an amorphous PLLA-based sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease. Presented at TCT. November 1, 2016Google Scholar
  7. Condado JA, Waksman R, Gurdiel O, Espinosa R, Gonzalez J, Burger B, Villoria G, Acquatella H, Crocker IR, Seung KB, Liprie SF (1997) Long-term angiographic and clinical outcome after percutaneous transluminal coronary angioplasty and intracoronary radiation therapy in humans. Circulation 96(3):727–732CrossRefGoogle Scholar
  8. Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, Kukreja N, Juni P, Sianos G, Hellige G, van Domburg RT, Hess OM, Boersma E, Meier B, Windecker S, Serruys PW (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369(9562):667–678CrossRefGoogle Scholar
  9. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R, Investigators P-A (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875CrossRefGoogle Scholar
  10. Fajadet J, Wijns W, Laarman GJ, Kuck KH, Ormiston J, Munzel T, Popma JJ, Fitzgerald PJ, Bonan R, Kuntz RE, Investigators EI (2006) Randomized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: clinical and angiographic results of the ENDEAVOR II trial. Circulation 114(8):798–806CrossRefPubMedCentralGoogle Scholar
  11. Fischman D, Savage M, Zalewski A, Goldberg S (1991) Overview of the Palmaz-Schatz stent. J Invasive Cardiol 3(2):75–84PubMedPubMedCentralGoogle Scholar
  12. Gammon RS, Chapman GD, Agrawal GM et al (1991) Mechanical features of the Duke biodegradable intravascular stent. JACC 17:235ACrossRefGoogle Scholar
  13. Grube E (2009) Bioabsorbable stent. The Boston scientific and REVA technology. EuroPCR, Barcelona, pp 19–22Google Scholar
  14. Grube E, Silber S, Hauptmann KE, Mueller R, Buellesfeld L, Gerckens U, Russell ME (2003) TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107(1): 38–42CrossRefPubMedCentralGoogle Scholar
  15. Gruntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1(8058):263CrossRefPubMedCentralGoogle Scholar
  16. Gruntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301(2):61–68CrossRefPubMedCentralGoogle Scholar
  17. Hofma SH, van der Giessen WJ, van Dalen BM et al (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27:166–170CrossRefGoogle Scholar
  18. Htay T, Liu MW (2005) Drug-eluting stent: a review and update. Vasc Health Risk Manag 1(4):263–276CrossRefPubMedCentralGoogle Scholar
  19. Iqbal J, Onuma Y, Ormiston J, Abizaid A, Waksman R, Serruys P (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35(12):765–776CrossRefGoogle Scholar
  20. Jabara R (2009) Poly-anhydride based on salicylic acid and adipic acid anhydride Barcelona, vol 25. EuroPCR, SpainGoogle Scholar
  21. Kahn JK, Hartzler GO (1990) Frequency and causes of failure with contemporary balloon coronary angioplasty and implications for new technologies. Am J Cardiol 66(10):858–860CrossRefPubMedCentralGoogle Scholar
  22. Kitabata H, Waksman R, Warnack B (2014) Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovasc Revasc Med 15(2):109–116CrossRefPubMedCentralGoogle Scholar
  23. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325CrossRefPubMedCentralGoogle Scholar
  24. Lincoff AM, Furst JG, Ellis SG, Tuch RJ, Topol EJ (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29(4):808–816CrossRefPubMedCentralGoogle Scholar
  25. Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710CrossRefPubMedCentralGoogle Scholar
  26. McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, Suddath WO, Weissman NJ, Torguson R, Kent KM, Pichard AD, Satler LF, Waksman R, Serruys PW (2004) Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364(9444):1519–1521CrossRefGoogle Scholar
  27. Moravej M, Prima F, Fiset M et al (2010) Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomater 6:1726–1735CrossRefGoogle Scholar
  28. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R, RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346(23): 1773–1780CrossRefGoogle Scholar
  29. Oberhauser JP, Hossainy S, Rapoza RJ (2009) Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention 5(Suppl F): F15–F22CrossRefGoogle Scholar
  30. Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797CrossRefPubMedCentralGoogle Scholar
  31. Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, Onuma Y, Garcia-Garcia HM, McGreevy R, Veldhof S (2008) A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371(9616):899–907 CrossRefPubMedCentralGoogle Scholar
  32. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84: 767–801CrossRefPubMedCentralGoogle Scholar
  33. Peuster M, Wohlsein P, Brügmann M et al (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569CrossRefPubMedCentralGoogle Scholar
  34. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27(28):4955–4962CrossRefPubMedCentralGoogle Scholar
  35. Pinto Slottow TL, Steinberg DH, Roy PK, Buch AN, Okabe T, Xue Z, Kaneshige K, Torguson R, Lindsay J, Pichard AD, Satler LF, Suddath WO, Kent KM, Waksman R (2008) Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period. Am J Cardiol 102(3):298–303CrossRefPubMedCentralGoogle Scholar
  36. de Ribamar Costa J et al (2016) Initial results of the FANTOM 1 trial: a first-in-man evaluation of a novel, radiopaque sirolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol 67:232–232CrossRefGoogle Scholar
  37. Ross R (1999a) Atherosclerosis-an inflammatory disease. N Engl J Med 340:115–126CrossRefPubMedCentralGoogle Scholar
  38. Ross R (1999b) Mechanisms of disease—atherosclerosis—an inflammatory disease. New Engl J Med 340(2):115–126CrossRefPubMedCentralGoogle Scholar
  39. Schatz RA, Baim DS, Leon M, Ellis SG, Goldberg S, Hirshfeld JW, Cleman MW, Cabin HS, Walker C, Stagg J et al (1991) Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 83(1):148–161CrossRefPubMedCentralGoogle Scholar
  40. Schofer J, Schluter M, Gershlick AH, Wijns W, Garcia E, Schampaert E, Breithardt G, Investigators ES (2003) Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS). Lancet 362(9390):1093–1099CrossRefPubMedCentralGoogle Scholar
  41. Seth A (2016) MeRes100—design specifications and the 6-months MeRes-1 results. Presented at TCT. November 1, 2016Google Scholar
  42. Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW (2017) Bioresorbable scaffold: the emerging reality and future directions. Circ Res 120(8):1341–1352CrossRefPubMedCentralGoogle Scholar
  43. Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, Pfisterer ME, Stone GW, Leon MB, de Lezo JS, Goy JJ, Park SJ, Sabate M, Suttorp MJ, Kelbaek H, Spaulding C, Menichelli M, Vermeersch P, Dirksen MT, Cervinka P, Petronio AS, Nordmann AJ, Diem P, Meier B, Zwahlen M, Reichenbach S, Trelle S, Windecker S, Juni P (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370(9591):937–948CrossRefPubMedCentralGoogle Scholar
  44. Tamai H (2004) Biodegradable stents four year follow-up. Presentation at TCT Google Scholar
  45. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H (2017) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102(4):399–404CrossRefGoogle Scholar
  46. Tenekecioglu E, Poon EK, Collet C, Thondapu V, Torii R, Bourantas CV, Zeng Y, Onuma Y, Ooi AS, Serruys PW, Barlis P (2016) The nidus for possible thrombus formation: insight from the microenvironment of bioresorbable vascular scaffold. JACC Cardiovasc Interv 9:2167–2168CrossRefPubMedCentralGoogle Scholar
  47. Tesfamariam B (2016) Bioresorbable vascular scaffolds: biodegradation, drug delivery and vascular remodeling. Pharmacol Res 107:163–171CrossRefPubMedCentralGoogle Scholar
  48. Tsuji T, Tamai H, Igaki K et al (2001) Biodegradable polymeric stent. Curr Interv Cardiol Rep 3: 10–17CrossRefPubMedCentralGoogle Scholar
  49. Vert M (2009) Bioabsorbable polymers in medicine: an overview. EuroIntervention 5(suppl F):F9–F14CrossRefGoogle Scholar
  50. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21(1):15–20CrossRefPubMedCentralGoogle Scholar
  51. Wang Y (2011) Stent formed from bioerodible metal-bioceramic composite. US Patent Appl. No: 13/155936, Filed on 8 June 2011Google Scholar
  52. Wang Y, Gale DC (2013) Methods of forming polymer-bioceramic composite medical devices with bioceramic particles. US Patent number 8,425,591, issued 23 April 2013Google Scholar
  53. Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Juni P, Vaina S, Hellige G, Tsuchida K, Morger C, Boersma E, Kukreja N, Meier B, Serruys PW, Windecker S (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52(14):1134–1140CrossRefPubMedCentralGoogle Scholar
  54. Wiemer M, Serruys PW, Miquel-Hebert K, Neumann FJ, Piek JJ, Grube E, Haase J, Thuesen L, Hamm C (2010) Five-year long-term clinical follow-up of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions: the SPIRIT FIRST trial. Catheter Cardiovasc Interv 75(7):997–1003PubMedPubMedCentralGoogle Scholar
  55. Wittchow E, Adden N, Riedmüller J, Savard C, Waksman R, Braune M (2013) Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention 8: 1441–1450CrossRefPubMedCentralGoogle Scholar
  56. Xu B (2016) FIRESORB PLLA-based sirolimus-eluting scaffold: 6-month FUTURE-I results. Presented at TCT. November 1, 2016Google Scholar
  57. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801): 242–248CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Neurosurgery and of Biomedical EngineeringYale UniversityNew HavenUSA

Personalised recommendations