Endothelial Nuclear Lamina in Mechanotransduction Under Shear Stress

  • Julie Y. JiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)


Endothelial cells that line the lumen of blood vessels are at the interface between hemodynamic forces and vascular wall biology. Endothelial cells transduce mechanical and biological signals from blood flow into intracellular signaling cascades through a process called mechanotransduction. Mechanotransduction is an important part of normal cell functions, as well as endothelial dysfunction which leads to inflammation and pathological conditions. For example, atherosclerosis preferentially develops in regions of disturbed fluid flow and low shear stress. The nuclear lamina, which sits underneath the nuclear envelope, serves to maintain the nuclear structure while acting as a scaffold for heterochromatin and many transcriptional proteins. Defects in lamina and its associated proteins cause a variety of human diseases including accelerated aging diseases such as Hutchinson-Gilford Progeria syndrome. The role of nuclear lamina in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In one study, lamin A/C was silenced in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to its natural ligand dexamethasone as well as fluid shear stress. Results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus but nuclear lamina is important to properly regulate GRE transcription. Ongoing research continues to investigate how nuclear lamins contribute to endothelial mechanotransduction and to better understand the role of Lamin A in vascular aging and in the progression of cardiovascular diseases.


  1. Adcock IM (2001) Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther 14:211–219CrossRefGoogle Scholar
  2. Adcock IM, Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 79:376–384CrossRefGoogle Scholar
  3. Al-Shali KZ, Hegele RA (2004) Laminopathies and atherosclerosis. Arterioscler Thromb Vasc Biol 24:1591–1595CrossRefGoogle Scholar
  4. Alsheimer M, Von Glasenapp E, Schnolzer M, Heid H, Benavente R (2000) Meiotic lamin C2: the unique amino-terminal hexapeptide GNAEGR is essential for nuclear envelope association. Proc Natl Acad Sci U S A 97:13120–13125CrossRefGoogle Scholar
  5. Ando J, Tsuboi H, Korenaga R, Takada Y, Toyama-Sorimachi N, Miyasaka M et al (1994) Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am J Physiol 267:C679–C687CrossRefGoogle Scholar
  6. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 94:557–572CrossRefGoogle Scholar
  7. Beck IM, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K (2009) Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 30:830–882CrossRefGoogle Scholar
  8. Biamonti G, Giacca M, Perini G, Contreas G, Zentilin L, Weighardt F, Guerra M, Della Valle G, Saccone S, Riva S et al (1992) The gene for a novel human Lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol 12:3499–3506CrossRefGoogle Scholar
  9. Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327CrossRefGoogle Scholar
  10. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288CrossRefGoogle Scholar
  11. Brassard JA, Fekete N, Garnier A, Hoesli CA (2016) Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology 17:129–145CrossRefGoogle Scholar
  12. Broers JLV, Ramaekers FCS, Bonne G, Ben Yaou R, Hutchison CJ (2006) Nuclear lamins: Laminopathies and their role in premature ageing. Physiol Rev 86:967–1008CrossRefGoogle Scholar
  13. Brostjan C, Anrather J, Csizmadia V, Natarajan G, Winkler H (1997) Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J Immunol 158:3836–3844PubMedGoogle Scholar
  14. Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24CrossRefGoogle Scholar
  15. Butin-Israeli V, Adam SA, Goldman AE, Goldman RD (2012) Nuclear lamin functions and disease. Trends Genet 28:464–471CrossRefGoogle Scholar
  16. Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112CrossRefGoogle Scholar
  17. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3:89ra58PubMedGoogle Scholar
  18. Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278:703–711CrossRefGoogle Scholar
  19. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224CrossRefGoogle Scholar
  20. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53CrossRefGoogle Scholar
  21. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318CrossRefGoogle Scholar
  22. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39:299–306PubMedPubMedCentralGoogle Scholar
  23. De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N, Szepetowski P, Hammadouche T, Vandenberghe A, Stewart CL, Grid D, Levy N (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 70:726–736CrossRefGoogle Scholar
  24. De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, Manders EM, Verstraeten VL, Van Steensel MA, Marcelis CL, Van den Wijngaard A, Vaux DJ, Ramaekers FC, Broers JL (2011) Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 20:4175–4186CrossRefGoogle Scholar
  25. Demmerle J, Koch AJ, Holaska JM (2012) The nuclear envelope protein Emerin binds directly to histone Deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 287:22080–22088CrossRefGoogle Scholar
  26. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185CrossRefGoogle Scholar
  27. Diamond SL, Eskin SG, McIntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485CrossRefGoogle Scholar
  28. Diamond S, Sharefkin J, Dieffenbach C, Frasier-Scott K, Mcintire L, Eskin S (1990) Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J Cell Physiol 143:364–371CrossRefGoogle Scholar
  29. Dittmer TA, Misteli T (2011) The Lamin protein family. Genome Biol 12:222CrossRefGoogle Scholar
  30. Dreesen O, Stewart CL (2011) Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany NY) 3:889–895CrossRefGoogle Scholar
  31. Eickelberg O, Roth M, Lorx R, Bruce V, Rudiger J, Johnson M, Block LH (1999) Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem 274:1005–1010CrossRefGoogle Scholar
  32. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in Lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298CrossRefGoogle Scholar
  33. Fatkin D, Macrae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, Mcdonough B (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724CrossRefGoogle Scholar
  34. Fleming I, Bauersachs J, Busse R (1997) Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 34:165–174CrossRefGoogle Scholar
  35. Frangos JA, Mcintire LV, Eskin SG (1988) Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng 32:1053–1060CrossRefGoogle Scholar
  36. Galliher-Beckley AJ, Williams JG, Cidlowski JA (2011) Ligand-independent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling. Mol Cell Biol 31:4663–4675CrossRefGoogle Scholar
  37. Gimbrone MA Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN (1997) Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 811:1–10; discussion 1CrossRefGoogle Scholar
  38. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31CrossRefGoogle Scholar
  39. Helmlinger G, Berk BC, Nerem RM (1995) Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am J Physiol 269:C367–C375CrossRefGoogle Scholar
  40. Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140:2603–2624CrossRefGoogle Scholar
  41. Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T (1995) Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension 25:449–452CrossRefGoogle Scholar
  42. Ho CY, Lammerding J (2012) Lamins at a glance. J Cell Sci 125:2087–2093CrossRefGoogle Scholar
  43. Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3:848–858CrossRefGoogle Scholar
  44. Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067CrossRefGoogle Scholar
  45. Itoh M, Adachi M, Yasui H, Takekawa M, Tanaka H, Imai K (2002) Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol Endocrinol 16:2382–2392CrossRefGoogle Scholar
  46. Ji JY, Jing H, Diamond SL (2003) Shear stress causes nuclear localization of endothelial glucocorticoid receptor and expression from the GRE promoter. Circ Res 92:279–285CrossRefGoogle Scholar
  47. Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J (2007) Cell nuclei spin in the absence of Lamin B1. J Biol Chem 282:20015–20026CrossRefGoogle Scholar
  48. Kaiser D, Freyberg MA, Friedl P (1997) Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 231:586–590CrossRefGoogle Scholar
  49. Kolb T, Maass K, Hergt M, AEBI U, Herrmann H (2011) Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus 2:425–433CrossRefGoogle Scholar
  50. Korenaga R, Ando J, Kosaki K, Isshiki M, Takada Y, Kamiya A (1997) Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am J Physiol 273:C1506–C1515CrossRefGoogle Scholar
  51. Krohne G, Benavente R (1986) The nuclear lamins. A multigene family of proteins in evolution and differentiation. Exp Cell Res 162:1–10CrossRefGoogle Scholar
  52. Kuchan M, Frangos J (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Phys 266:C628–C636CrossRefGoogle Scholar
  53. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378CrossRefGoogle Scholar
  54. Lammerding J, Fong LG, JI JY, reue K, Stewart CL, Young SG, Lee RT (2006) Lamins a and C but not Lamin B1 regulate nuclear mechanics. J Biol Chem 281:25768–25780CrossRefGoogle Scholar
  55. Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between Lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777CrossRefGoogle Scholar
  56. Malek A, Izumo S (1992) Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 263:C389–C396CrossRefGoogle Scholar
  57. Malek AM, Izumo S (1994) Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens 12:989–999CrossRefGoogle Scholar
  58. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042CrossRefGoogle Scholar
  59. Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184:45–55CrossRefGoogle Scholar
  60. Marroquin J, Mitter S, Poggio T (1987) Probabalistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82:76–89CrossRefGoogle Scholar
  61. Masuda H, Kawamura K, Tohda K, Shozawa T, Sageshima M, Kamiya A (1989) Increase in endothelial cell density before artery enlargement in flow-loaded canine carotid artery. Arteriosclerosis 9:812–823CrossRefGoogle Scholar
  62. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604CrossRefGoogle Scholar
  63. Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117:1282–1293CrossRefGoogle Scholar
  64. Nayebosadri A, Ji JY (2013) Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation. Am J Physiol Cell Physiol 305:C309–C322CrossRefGoogle Scholar
  65. Nayebosadri A, Christopher L, Ji JY (2012) Bayesian image analysis of dexamethasone and shear stress-induced glucocorticoid receptor intracellular movement. Ann Biomed Eng 40:1508–1519CrossRefGoogle Scholar
  66. Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95:1363–1369CrossRefGoogle Scholar
  67. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 30:2301–2309CrossRefGoogle Scholar
  68. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666CrossRefGoogle Scholar
  69. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, CHANG GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A 101:2482–2487CrossRefGoogle Scholar
  70. Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM (2003) Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol 194:194–205CrossRefGoogle Scholar
  71. Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–2210CrossRefGoogle Scholar
  72. Ranjan V, Xiao Z, Diamond SL (1995) Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 269:H550–H555PubMedGoogle Scholar
  73. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr (1993) Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A 90:4591–4595CrossRefGoogle Scholar
  74. ROSS R (1999) Atherosclerosis--an inflammatory disease. N Engl J Med 340:115–126CrossRefGoogle Scholar
  75. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063CrossRefGoogle Scholar
  76. Scaffidi P, Gordon L, Misteli T (2005) The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol 3:e395CrossRefGoogle Scholar
  77. Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313PubMedGoogle Scholar
  78. Shevelyov YY, Nurminsky DI (2012) The nuclear lamina as a gene-silencing hub. Curr Issues Mol Biol 14:27–38PubMedGoogle Scholar
  79. Shyy JY, Li YS, Lin MC, Chen W, Yuan S, Usami S, Chien S (1995) Multiple cis-elements mediate shear stress-induced gene expression. J Biomech 28:1451–1457CrossRefGoogle Scholar
  80. Sieprath T, Darwiche R, De Vos WH (2012) Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 421:635–639CrossRefGoogle Scholar
  81. Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39CrossRefGoogle Scholar
  82. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC (2001) Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci U S A 98:6476–6481CrossRefGoogle Scholar
  83. Teichert AM, Scott JA, Robb GB, Zhou YQ, Zhu SN, Lem M, Keightley A, Steer BM, Schuh AC, Adamson SL, Cybulsky MI, Marsden PA (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 103:24–33CrossRefGoogle Scholar
  84. Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A 93:10417–10422CrossRefGoogle Scholar
  85. Tseng H, Peterson T, Berk B (1995) Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res 77:869–878CrossRefGoogle Scholar
  86. Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 103:3250–3255CrossRefGoogle Scholar
  87. Volger OL, Fledderus JO, Kisters N, Fontijn RD, Moerland PD, Kuiper J, Van Berkel TJ, Bijnens AP, Daemen MJ, Pannekoek H, Horrevoets AJG (2007) Distinctive expression of chemokines and transforming growth factor-beta signaling in human arterial endothelium during atherosclerosis. Am J Pathol 171:326–337CrossRefGoogle Scholar
  88. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123:1973–1978CrossRefGoogle Scholar
  89. Wydner KL, Mcneil JA, Lin F, Worman HJ, Lawrence JB (1996) Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32:474–478CrossRefGoogle Scholar
  90. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121CrossRefGoogle Scholar
  91. Zanchi NE, Filho MA, Felitti V, Nicastro H, Lorenzeti FM, Lancha AH Jr (2010) Glucocorticoids: extensive physiological actions modulated through multiple mechanisms of gene regulation. J Cell Physiol 224:311–315CrossRefGoogle Scholar
  92. Zebda N, Dubrovskyi O, Birukov KG (2012) Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res 83:71–81CrossRefGoogle Scholar
  93. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, Herrmann H, Wallrath LL, Lammerding J (2013) Myopathic Lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 22(12):2335–2349CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringIndiana University Purdue University IndianapolisIndianapolisUSA

Personalised recommendations