Advertisement

Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion

  • Herbert H. Lipowsky
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

Leukocyte (WBC) to endothelial cell (EC) adhesion is a receptor-mediated process governed by the avidity and affinity of selectins, which modulate adhesive forces during WBC rolling, and integrins, which determine the strength of firm adhesion. Adhesion receptors on the EC surface lie below an endothelial surface layer (ESL) comprised of the EC glycocalyx and adsorbed proteins which, in vivo, have a thickness on the order 500 nm. The glycocalyx consists of a matrix of the glycosaminoglycans heparan sulfate and chondroitin sulfate, bound to proteoglycans and encased in hyaluronan. Together, these carbohydrates form a layer that varies in glycan content along the length of post-capillary venules where WBC-EC adhesion occurs. Thickness and porosity of the glycocalyx can vary dramatically during the inflammatory response as observed by increased infiltration and diffusion of macromolecules within the layer following activation of the EC by cytokines and chemoattractants. In models of inflammation in the living animal, the shedding of glycans and diminished thickness of the glycocalyx rapidly occur to facilitate penetration by the WBCs and adhesion to the EC. The primary effectors of glycan shedding appear to be metalloproteases and heparanase released by the EC. Retardation of glycan shedding and WBC-EC adhesion has been demonstrated in vivo using MMP inhibitors and low-molecular-weight heparin (LMWH), where the latter competitively binds to heparanase liberated by the EC. Together, these agents may serve to stabilize the ESL and provide a useful strategy for treatment of inflammatory disorders.

Notes

Acknowledgments

This work was supported in part by NIH R01 HL-39286.

References

  1. Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486PubMedCentralCrossRefPubMedGoogle Scholar
  2. Alon R, Hammer DA, Springer TA (1995) Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542CrossRefGoogle Scholar
  3. Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex cd18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69:338–340Google Scholar
  4. Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y (1995) Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci 748:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atherton A, Born GV (1972) Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol 222:447–474PubMedCentralCrossRefPubMedGoogle Scholar
  6. Atherton A, Born GV (1973) Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol 233:157–165PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bagge U, Karlsson R (1980) Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc Res 20:92–95CrossRefGoogle Scholar
  8. Bar-Ner M, Eldor A, Wasserman L, Matzner Y, Cohen IR, Fuks Z et al (1987) Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 70:551–557Google Scholar
  9. Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D (2015) Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 80:389–402PubMedCentralCrossRefPubMedGoogle Scholar
  10. Bennett HS, Luft JH, Hampton JC (1959) Morphological classifications of vertebrate blood capillaries. Am J Phys 196:381–390Google Scholar
  11. Braide M, Amundson B, Chien S, Bagge U (1984) Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc Res 27:331–352CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of Guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999CrossRefGoogle Scholar
  13. Brule S, Charnaux N, Sutton A, Ledoux D, Chaigneau T, Saffar L et al (2006) The shedding of syndecan-4 and syndecan-1 from hela cells and human primary macrophages is accelerated by sdf-1/cxcl12 and mediated by the matrix metalloproteinase-9. Glycobiology 16:488–501CrossRefGoogle Scholar
  14. Cabrales P, Vazquez BY, Tsai AG, Intaglietta M (2007) Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 102:2251–2259CrossRefGoogle Scholar
  15. Chappell D, Jacob M, Rehm M, Stoeckelhuber M, Welsch U, Conzen P et al (2008) Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem 389:79–82CrossRefGoogle Scholar
  16. Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M et al (2009a) The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 104:1313–1317CrossRefGoogle Scholar
  17. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U et al (2009b) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89CrossRefGoogle Scholar
  18. Colburn P, Kobayashi E, Buonassisi V (1994) Depleted level of heparan sulfate proteoglycan in the extracellular matrix of endothelial cell cultures exposed to endotoxin. J Cell Physiol 159:121–130CrossRefGoogle Scholar
  19. Constantinescu AA, Vink H, Spaan JA (2001) Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized ldl. Am J Physiol Heart Circ Physiol 280:H1051–H1057CrossRefGoogle Scholar
  20. Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541–1547CrossRefGoogle Scholar
  21. Daniels B, Linhardt RJ, Zhang F, Mao W, Wice SM, Hiebert LM (2006) In vivo antithrombotic synergy of oral heparin and arginine: endothelial thromboresistance without changes in coagulation parameters. Thromb Haemost 95:865–872PubMedCentralCrossRefPubMedGoogle Scholar
  22. DeLano FA, Schmid-Schonbein GW (2008) Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 52:415–423PubMedCentralCrossRefPubMedGoogle Scholar
  23. Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Phys 258:H647–H654Google Scholar
  24. Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA (1995) Heparin is an adhesive ligand for the leukocyte integrin mac-1 (cd11b/cd1). J Cell Biol 130:1473–1482CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ding K, Lopez-Burks M, Sanchez-Duran JA, Korc M, Lander AD (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 171:729–738PubMedCentralCrossRefPubMedGoogle Scholar
  26. Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M et al (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eskens BJM, Zuurbier CJ, van Haare J, Vink H, van Teeffelen J (2013) Effects of two weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol 12:175PubMedCentralCrossRefPubMedGoogle Scholar
  28. Fahraeus R (1929) The suspension stability of blood. Physiol Rev 9:241–274CrossRefGoogle Scholar
  29. Feng J, Weinbaum S (2000) Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J Fluid Mech 422:281–317CrossRefGoogle Scholar
  30. Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a timp-3-sensitive metalloproteinase. J Cell Biol 148:811–824PubMedCentralCrossRefPubMedGoogle Scholar
  31. Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519PubMedCentralCrossRefPubMedGoogle Scholar
  32. Gaddi AV, Cicero AF, Gambaro G (2010) Nephroprotective action of glycosaminoglycans: why the pharmacological properties of sulodexide might be reconsidered. Int J Nephrol Renovasc Dis 3:99–105PubMedCentralPubMedGoogle Scholar
  33. Gao L, Lipowsky HH (2010) Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc Res 80:394–401PubMedCentralCrossRefPubMedGoogle Scholar
  34. Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27:204–222CrossRefGoogle Scholar
  35. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12:12–26CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gotte M (2003) Syndecans in inflammation. FASEB J 17:575–591CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290:H458–H452CrossRefGoogle Scholar
  38. Grant L (1973) The sticking and emigration of white blood cells in inflammation. In: Zweifach BW, Grant L, McClusky R (eds) The inflammatory process, vol 2. Academic Press, Orlando, pp 205–249CrossRefGoogle Scholar
  39. Grimm J, Keller R, de Groot PG (1988) Laminar flow induces cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb Haemost 60:437–441CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gronski TJ, Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M et al (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem 272:12189–12194CrossRefGoogle Scholar
  41. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD et al (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:1540–1547CrossRefGoogle Scholar
  42. Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K (2001) L-selectin shedding regulates leukocyte recruitment. J Exp Med 193:863–872PubMedCentralCrossRefPubMedGoogle Scholar
  43. Haldenby KA, Chappell DC, Winlove CP, Parker KH, Firth JA (1994) Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res 31:2–9CrossRefGoogle Scholar
  44. Hayward R, Scalia R, Hopper B, Appel JZ III, Lefer AM (1998) Cellular mechanisms of heparinase iii protection in rat traumatic shock. Am J Phys 275:H23–H30Google Scholar
  45. Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Phys 277:H508–H514Google Scholar
  46. Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279:H2815–H2823CrossRefGoogle Scholar
  47. Hofmann-Kiefer KF, Kemming GI, Chappell D, Flondor M, Kisch-Wedel H, Hauser A et al (2009) Serum heparan sulfate levels are elevated in endotoxemia. Eur J Med Res 14:526–531PubMedCentralPubMedGoogle Scholar
  48. Hoover RL, Folger R, Haering WA, Ware BR, Karnovsky MJ (1980) Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J Cell Sci 45:73–86Google Scholar
  49. House SD, Lipowsky HH (1987a) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Phys 252:H211–H222Google Scholar
  50. House SD, Lipowsky HH (1987b) Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34:363–379CrossRefGoogle Scholar
  51. Huxley VH, Curry FE (1991) Differential actions of albumin and plasma on capillary solute permeability. Am J Phys 260:H1645–H1654Google Scholar
  52. Ihrcke NS, Platt JL (1996) Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol 168:625–637CrossRefGoogle Scholar
  53. Ihrcke NS, Wrenshall LE, Lindman BJ, Platt JL (1993) Role of heparan sulfate in immune system-blood vessel interactions. Immunol Today 14:500–505CrossRefGoogle Scholar
  54. Iigo Y, Suematsu M, Higashida T, Oheda J, Matsumoto K, Wakabayashi Y et al (1997) Constitutive expression of icam-1 in rat microvascular systems analyzed by laser confocal microscopy. Am J Phys 273:H138–H147Google Scholar
  55. Jo H, Jung SH, Kang J, Yim HB, Kang KD (2014) Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep 47:637–642PubMedCentralCrossRefPubMedGoogle Scholar
  56. Jung U, Norman KE, Scharffetter-Kochanek K, Beaudet AL, Ley K (1998) Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest 102:1526–1533PubMedCentralCrossRefPubMedGoogle Scholar
  57. Kinashi T, Katagiri K (2004) Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule RAPL. Immunol Lett 93:1–5CrossRefGoogle Scholar
  58. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Phys 237:H481–H490Google Scholar
  59. Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A (1998) Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest 101:877–889PubMedCentralCrossRefPubMedGoogle Scholar
  60. Kolarova H, Ambruzova B, Sindlerova LS, Klinke A, Kubala L (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm 2014:694312CrossRefGoogle Scholar
  61. Laudanna C, Kim JY, Constantin G, Butcher EC (2002) Rapid leukocyte integrin activation by chemokines. Immunol Rev 186:37–46CrossRefGoogle Scholar
  62. Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404CrossRefGoogle Scholar
  63. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873CrossRefGoogle Scholar
  64. Lawrence MB, Springer TA (1993) Neutrophils roll on E-selectin. J Immunol 151:6338–6346Google Scholar
  65. Lawrence MB, McIntire LV, Eskin SG (1987) Effect of flow on polymorphonuclear leukocyte endothelial-cell adhesion. Blood 70:1284–1290Google Scholar
  66. Lever R, Hoult JRS, Page CP (2000) The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br J Pharmacol 129:533–540PubMedCentralCrossRefPubMedGoogle Scholar
  67. Ley K, Bullard DC, Arbones ML, Bosse R, Vestweber D, Tedder TF et al (1995) Sequential contribution of l- and p-selectin to leukocyte rolling in vivo. J Exp Med 181:669–675CrossRefGoogle Scholar
  68. Li Z, Li L, Zielke HR, Cheng L, Xiao R, Crow MT et al (1996) Increased expression of 72-kd type iv collagenase (mmp-2) in human aortic atherosclerotic lesions. Am J Pathol 148:121–128PubMedCentralPubMedGoogle Scholar
  69. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646CrossRefGoogle Scholar
  70. Lipowsky HH, Lescanic A (2013) The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 90:80–85CrossRefGoogle Scholar
  71. Lipowsky HH, Lescanic A (2017) Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 112:72–78PubMedCentralCrossRefPubMedGoogle Scholar
  72. Lipowsky HH, Sah R, Lescanic A (2011) Relative roles of doxycycline and cation chelation in endothelial glycan shedding and adhesion of leukocytes. Am J Physiol Heart Circ Physiol 300:H415–H422CrossRefGoogle Scholar
  73. Lipowsky HH, Lescanic A, Sah R (2015) Role of matrix metalloproteases in the kinetics of leukocyte-endothelial adhesion in post-capillary venules. Biorheology 52:433–445CrossRefGoogle Scholar
  74. Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25:1773–1783Google Scholar
  75. Luo B-H, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647PubMedCentralCrossRefPubMedGoogle Scholar
  76. Marki A, Esko JD, Pries AR, Ley K (2015) Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 98:503–515PubMedCentralCrossRefPubMedGoogle Scholar
  77. Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283:H1282–H1291CrossRefGoogle Scholar
  78. Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286:H1672–H1680CrossRefGoogle Scholar
  79. Mulivor AW, Lipowsky HH (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666CrossRefGoogle Scholar
  80. Ning F, Wang X, Shang L, Wang T, Lv C, Qi Z et al (2015) Low molecular weight heparin may prevent acute lung injury induced by sepsis in rats. Gene 557:88–91CrossRefGoogle Scholar
  81. Nordling S, Hong J, Fromell K, Edin F, Brannstrom J, Larsson R et al (2015) Vascular repair utilising immobilised heparin conjugate for protection against early activation of inflammation and coagulation. Thromb Haemost 113:1312–1322CrossRefGoogle Scholar
  82. Oduah EI, Linhardt RJ, Sharfstein ST (2016) Heparin: past, present, and future. Pharmaceuticals (Basel) 9 pii: E38Google Scholar
  83. Padberg JS, Wiesinger A, di Marco GS, Reuter S, Grabner A, Kentrup D et al (2014) Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234:335–343CrossRefGoogle Scholar
  84. Page C (2013) Heparin and related drugs: beyond anticoagulant activity. ISRN Pharmacol 2013:910743PubMedCentralCrossRefPubMedGoogle Scholar
  85. Park PW, Reizes O, Bernfield M (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 275:29923–29926CrossRefGoogle Scholar
  86. Platt JL, Vercellotti GM, Lindman BJ, Oegema TR Jr, Bach FH, Dalmasso AP (1990) Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J Exp Med 171:1363–1368CrossRefGoogle Scholar
  87. Platt JL, Dalmasso AP, Lindman BJ, Ihrcke NS, Bach FH (1991) The role of c5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 21:2887–2890CrossRefGoogle Scholar
  88. Platts SH, Duling BR (2004) Adenosine a3 receptor activation modulates the capillary endothelial glycocalyx. Circ Res 94:77–82CrossRefGoogle Scholar
  89. Platts SH, Linden J, Duling BR (2003) Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine a2a receptor activation. Am J Physiol Heart Circ Physiol 284:H2360–H2367CrossRefGoogle Scholar
  90. Poiseuille JLM (1835) Recherches sur les causes du mouvement du sang dans les vaisseaux capillaries. C R Acad Sci 6:554–560Google Scholar
  91. Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102:770–776CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67:826–834CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Phys 273:H2272–H2279Google Scholar
  94. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666CrossRefPubMedPubMedCentralGoogle Scholar
  95. Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636PubMedCentralCrossRefPubMedGoogle Scholar
  96. Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC et al (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457PubMedCentralCrossRefPubMedGoogle Scholar
  97. Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (hat) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 286:30377–30383PubMedCentralCrossRefPubMedGoogle Scholar
  98. Rapraeger A (1989) Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J Cell Biol 109:2509–2518CrossRefPubMedPubMedCentralGoogle Scholar
  99. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906CrossRefPubMedPubMedCentralGoogle Scholar
  100. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359PubMedCentralCrossRefPubMedGoogle Scholar
  101. Schmid-Schonbein GW, Usami S, Skalak R, Chien S (1980) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 19:45–70CrossRefGoogle Scholar
  102. Schnitzer JE, Ulmer JB, Palade GE (1990a) A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc Natl Acad Sci U S A 87:6843–6847PubMedCentralCrossRefPubMedGoogle Scholar
  103. Schnitzer JE, Shen CP, Palade GE (1990b) Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: identification of sialoglycoproteins. Eur J Cell Biol 52:241–251Google Scholar
  104. Secomb TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol 281:H629–H636CrossRefPubMedPubMedCentralGoogle Scholar
  105. Simionescu M, Simionescu N, Palade GE (1982) Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 94:406–413CrossRefGoogle Scholar
  106. Smith ML, Long DS, Damiano ER, Ley K (2003) Near-wall micro-piv reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85:637–645PubMedCentralCrossRefPubMedGoogle Scholar
  107. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342CrossRefGoogle Scholar
  108. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434CrossRefGoogle Scholar
  109. Springer TA, Lasky LA (1991) Cell adhesion. Sticky sugars for selectins. Nature 349:196–197CrossRefGoogle Scholar
  110. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255CrossRefGoogle Scholar
  111. Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272:14713–14720CrossRefGoogle Scholar
  112. Sutera SP, Seshadri V, Croce PA, Hochmuth RM (1970) Capillary blood flow II. Deformable model cells in tube flow. Microvasc Res 2:420–433CrossRefGoogle Scholar
  113. Svennevig K, Hoel T, Thiara A, Kolset S, Castelheim A, Mollnes T et al (2008) Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion 23:165–171CrossRefGoogle Scholar
  114. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases mmp-2, mmp-9, and mt1-mmp as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680PubMedCentralCrossRefPubMedGoogle Scholar
  115. Teixeira MM, Hellewell PG (1993) Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in Guinea-pig skin. Br J Pharmacol 110:1496–1500PubMedCentralCrossRefPubMedGoogle Scholar
  116. VanTeeffelen JW, Brands J, Jansen C, Spaan JA, Vink H (2007) Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension 50:261–267CrossRefGoogle Scholar
  117. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589CrossRefGoogle Scholar
  118. Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–H289CrossRefGoogle Scholar
  119. Vogl-Willis CA, Edwards IJ (2004) High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochim Biophys Acta 1672:36–45CrossRefGoogle Scholar
  120. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167CrossRefGoogle Scholar
  121. Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstadt H et al (2013) Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 8:e80905PubMedCentralCrossRefPubMedGoogle Scholar
  122. Xu J, Qu D, Esmon NL, Esmon CT (2000) Metalloproteolytic release of endothelial cell protein c receptor. J Biol Chem 275:6038–6044CrossRefGoogle Scholar
  123. Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174–1184PubMedCentralCrossRefPubMedGoogle Scholar
  124. Yini S, Heng Z, Xin A, Xiaochun M (2015) Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand 59:160–169CrossRefGoogle Scholar
  125. Young E (2008) The anti-inflammatory effects of heparin and related compounds. Thromb Res 122:743–752CrossRefGoogle Scholar
  126. Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275:4183–4191CrossRefGoogle Scholar
  127. Zarbock A, Ley K (2009) Neutrophil adhesion and activation under flow. Microcirculation 16:31–42PubMedCentralCrossRefPubMedGoogle Scholar
  128. Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One 4:e5181PubMedCentralCrossRefPubMedGoogle Scholar
  129. Zhao Y, Chien S, Weinbaum S (2001) Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys J 80:1124–1140PubMedCentralCrossRefPubMedGoogle Scholar
  130. Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C (2005) Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol 99:1471–1476CrossRefGoogle Scholar
  131. Zweifach BW (1955) Structural makeup of capillary wall. Ann N Y Acad Sci 61:670–677CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringPenn State UniversityUniversity ParkUSA

Personalised recommendations