Advertisement

Transport Across the Blood-Brain Barrier

  • Bingmei M. Fu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)

Abstract

The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the microenvironment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-borne neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This chapter summarized the unique structures of the BBB; described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB and the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents, and drug carriers; and presented recently developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Recent findings for modulation of the BBB permeability by chemical and physical stimuli were described. Finally, drug delivery strategies through specific trans-BBB routes were discussed.

Notes

Acknowledgment

The author would like to thank the funding support from the National Institutes of Health RO1NS101362-01 and U54CA132378-09.

References

  1. Abbott NJ (1992) Comparative physiology of the blood-brain barrier. In: Physiology and pharmacology of the blood-brain barrier. Springer, HeidelbergGoogle Scholar
  2. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629PubMedCrossRefPubMedCentralGoogle Scholar
  3. Abbott NJ, Patabendige AK, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neuorbiol Dis 37:13CrossRefGoogle Scholar
  4. Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE (1998) Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Phys 274(6 Pt 2):H1885–H1894Google Scholar
  5. Adamson RH, Lenz JE, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol Lond 557:889PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allt G, Lawrenson JG (1997) Is the pial microvessel a good model for blood-brain barrier studies? Brain Res Rev 24:67PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101(5):1046–1056PubMedPubMedCentralGoogle Scholar
  8. Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19(4):343–351PubMedPubMedCentralGoogle Scholar
  9. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991.  https://doi.org/10.1084/jem.20142290 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bakker Erik NTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baldwin SA, Fugaccia I, Brown DR, Brown LV, Scheff SW (1996) Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 85(3):476PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1PubMedCrossRefPubMedCentralGoogle Scholar
  13. Balyasnikova IV, Pelligrino DA, Greenwood J, Adamson P, Dragon S, Raza H, Galea E (2000) Cyclic adenosine monophosphate regulates the expression of the intercellular adhesion molecule and the inducible nitric oxide synthase in brain endothelial cells. J Cereb Blood Flow Metab 20(4):688–699PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J (2000) The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl 76:125PubMedPubMedCentralGoogle Scholar
  15. Begley DJ (2007) Structure and function of the blood-brain barrier. In: Enhancement in drug delivery. CRC Press, Boca Raton, p 575Google Scholar
  16. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91(6):2076PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bodor N, Farag HH, Brewster ME (1981) Site-specific, sustained release of drugs to the brain. Science 214(4527):1370PubMedCrossRefPubMedCentralGoogle Scholar
  18. Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60(3):297PubMedCrossRefPubMedCentralGoogle Scholar
  19. Boveri M, Berezowski V, Price A, Slupek S, Lenfant AM, Benaud C, Hartung T, Cecchelli R, Prieto P, Dehouck MP (2005) Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line. Glia 51(3):187PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14(4):396PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brewster ME, Raghavan K, Pop E, Bodor N (1994) Enhanced delivery of ganciclovir to the brain through the use of redox targeting. Antimicrob Agents Chemother 38(4):817PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10PubMedCrossRefPubMedCentralGoogle Scholar
  23. Brown PD, Davies SL, Speake T, Millar ID (2004a) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brown RC, Egleton RD, Davis TP (2004b) Mannitol opening of the blood–brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res 1014(1–2):221–227PubMedCrossRefPubMedCentralGoogle Scholar
  25. Brown RC, Morris AP, O'Neil RG (2007) Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res 1130(1):17PubMedCrossRefPubMedCentralGoogle Scholar
  26. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47PubMedCrossRefPubMedCentralGoogle Scholar
  27. Carare R, Bernardes-Silva M, Newman T, Page A, Nicoll J, Perry V, Weller R (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17(1):29PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen CC, Sheeran PS, Wu SY, Olumolade OO, Dayton PA, Konofagou EE (2013) Targeted drug delivery with focused ultrasound-induced blood–brain barrier opening using acoustically-activated nanodroplets. J Control Release 172(3):795–804PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chu PC, Chai WY, Hsieh HY et al (2013) Pharmacodynamic analysis of magnetic resonance imaging-monitored focused ultrasound-induced blood–brain barrier opening for drug delivery to brain tumors. Biomed Res Int 2013:627496PubMedPubMedCentralGoogle Scholar
  31. Cornford EM, Young D, Paxton JW, Sofia RD (1992) Blood-brain barrier penetration of felbamate. Epilepsia 33:944PubMedCrossRefGoogle Scholar
  32. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241(1):49–55PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951(2): 243PubMedCrossRefPubMedCentralGoogle Scholar
  34. Curley CT, Sheybani ND, Bullock TN, Price RJ (2017) Focused ultrasound immunotherapy for central nervous system pathologies: challenges and opportunities. Theranostics 7(15):3608–3623PubMedCrossRefPubMedCentralGoogle Scholar
  35. Curry FE (1983) Mechanics and thermodynamics of transcapillary exchange. In: Handbook of physiology. The cardiovascular system. The American Physiology Society, BethesdaGoogle Scholar
  36. Dean RL, Emerich DF, Hasler BP, Bartus RT (1999) Cereport (RMP-7) increases carboplatin levels in brain tumors after pretreatment with dexamethasone. Neuro-Oncology 1(4):268PubMedCrossRefPubMedCentralGoogle Scholar
  37. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59PubMedCrossRefPubMedCentralGoogle Scholar
  38. Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, de Aguilar PV (2002) Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods 121(1):21PubMedCrossRefPubMedCentralGoogle Scholar
  39. Deng CX (2010) Targeted drug delivery across the blood–brainbarrierusing ultrasound technique. Ther Deliv 1(6):819–848PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11(3):289PubMedCrossRefPubMedCentralGoogle Scholar
  41. Doolittle ND, Abrey LE, Ferrari N, Hall WA, Laws ER, McLendon RE, Muldoon LL, Peereboom D, Peterson DR, Reynolds CP, Senter P, Neuwelt EA (2002) Targeted delivery in primary and metastatic brain tumors: summary report of the seventh annual meeting of the blood-brain barrier disruption consortium. Clin Cancer Res 8(6):1702PubMedPubMedCentralGoogle Scholar
  42. Easton AS, Fraser PA (1994) Variable restriction of albumin diffusion across inflamed cerebral microvessels of the anaesthetized rat. J Physiol 475:147PubMedCrossRefPubMedCentralGoogle Scholar
  43. Easton AS, Sarker MH, Fraser PA (1997) Two components of blood-brain barrier disruption in the rat. J Physiol 503(3):613PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ehrlich P (1885) Das sauerstufbudurfnis des organismus. Hireschwald, BerlinGoogle Scholar
  45. Elsinga PH, Hendrikse NH, Bart J, Vaalburg W, van Waarde A (2004) PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des 10:1493PubMedCrossRefPubMedCentralGoogle Scholar
  46. Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8(4):10–1186Google Scholar
  47. Engvall E (1995) Structure and function of basement membranes. Int J Dev Biol 39(5):781PubMedPubMedCentralGoogle Scholar
  48. Fan J, Fu BM (2016) Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Ann Biomed Eng 44(7):2189–2201PubMedCrossRefPubMedCentralGoogle Scholar
  49. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 64(6):575PubMedCrossRefPubMedCentralGoogle Scholar
  50. Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818(1):65PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fraser PA, Dallas AD, Davies S (1990) Measurement of filtration coefficient in single cerebral microvessels of the frog. J Physiol 423:343–361PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fu BM, Chen B (2003) A model for the structural mechanisms in the regulation of microvessel permeability by junction strands. ASME J Biomech Eng 125:620CrossRefGoogle Scholar
  53. Fu BM, Shen S (2004) Acute VEGF effect on solute permeability of mammalian microvessels in vivo. Microvasc Res 68:51PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fu BM, Tsay R, Curry FE, Weinbaum S (1994) A junction-orifice-entrance layer model for capillary permeability: application to frog mesenteric capillaries. ASME J Biomech Eng 116:502CrossRefGoogle Scholar
  55. Fu BM, Shen S, Chen B (2006) Structural mechanisms in the abolishment of VEGF-induced microvascular hyperpermeability by cAMP. J Biomech Eng 128(3):317–328PubMedPubMedCentralGoogle Scholar
  56. Fu BM, Yang J, Cai B, Fan J, Zhang L, Zeng M (2015) Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo. Sci Rep 5:15697PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fukuda K, Tanno H, Okimura Y, Nakamura M, Yamaura A (1995) The blood-brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats. J Neurotrauma 12(3):315PubMedCrossRefPubMedCentralGoogle Scholar
  58. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K, Mochizuki N (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25(1):136–146PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gaber MW, Yuan H, Killmar JT, Naimark MD, Kiani MF, Merchant TE (2004) An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle. Brain Res Protocol 13:1CrossRefGoogle Scholar
  61. Gaillard PJ, de Boer AG (2000) Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 12(2):95PubMedCrossRefPubMedCentralGoogle Scholar
  62. Goldmann E (1913) Vitalfarbung am zentralnervensystem. Abhandl Kongil preuss Akad Wiss, vol 1, pp. 1Google Scholar
  63. Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193PubMedCrossRefPubMedCentralGoogle Scholar
  64. Greenwood J, Hammarlund-Udenaes M, Jones HC, Stitt AW, Vandenbrouke RE, Romero IA, Campbell M, Fricker G, Brodin B, Manninga H, Gaillard PJ, Schwaninger M, Webster C, Wicher KB, Khrestchatisky M (2017) Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017. Fluids Barriers CNS 14(1):31PubMedCrossRefPubMedCentralGoogle Scholar
  65. Haeren RH, van de Ven SE, van Zandvoort MA, Vink H, van Overbeeke JJ, Hoogland G, Rijkers K (2016) Assessment and imaging of the cerebrovascular glycocalyx. Curr Neurovasc Res 13(3):249–260PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hamm S, Dehouck B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, Dehouck MP (2004) Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315(2):157PubMedCrossRefPubMedCentralGoogle Scholar
  67. Haseloff RF, Blasig IE, Bauer HC, Bauer H (2005) In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 25(1):25PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173PubMedCrossRefPubMedCentralGoogle Scholar
  69. He P, Curry FE (1993) Differential actions of cAMP on endothelial [Ca2+]i and permeability in microvessels exposed to ATP. Am J Phys 265(3 Pt 2): H1019–H1023Google Scholar
  70. Hemmila JM, Drewes LR (1993) Glucose transporter (GLUT1) expression by canine brain microvessel endothelial cells in culture: an immunocytochemical study. Adv Exp Med Biol 331:13PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hervé F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10(3):455PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105(3):445PubMedCrossRefPubMedCentralGoogle Scholar
  74. Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199PubMedCrossRefPubMedCentralGoogle Scholar
  75. Karyekar CS, Fasano A, Raje S, Lu RL, Dowling TC, Eddington ND (2003) Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharm Sci 92(2):414PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kay GG (2000) The effects of antihistamines on cognition and performance. J Allergy Clin Immunol 105:S622PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30(5):415PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 39(4):339PubMedPubMedCentralGoogle Scholar
  79. Kinoshita M (2006) Targeted drug delivery to the brain using focused ultrasound. Top Magn Reson Imaging 17(3):209PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378PubMedCrossRefPubMedCentralGoogle Scholar
  81. Konofagou EE (2012) Optimization of the ultrasound-induced blood–brain barrier opening. Theranostics 2(12):1223–1237PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M, Schabitz WR, Oschmann P, Engelhardt B (2008) Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult Scler 14(6):843PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kroll RA, Neuwelt EA (1998) Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42(5):1083PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kumagai AK, Eisenberg JB, Pardridge WM (1987) Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries.Model system of blood-brain barrier transport. J Biol Chem 262(31):15214PubMedPubMedCentralGoogle Scholar
  85. de Lange EC, de Boer BA, Breimer DD (1999) Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 36:211PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lawrenson JG, Reid AR, Allt G (1997) Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood-brain barrier? Cell Tissue Res 288:259–265PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lewandowsky M (1900) Zur lehre von der cerebrospinalflussigkeit. Z Klin Med 40:480Google Scholar
  88. Li G, Fu BM (2011) An electro-diffusion model for the blood-brain barrier permeability to charged molecule. ASME J Biomech Eng 133(2):0210CrossRefGoogle Scholar
  89. Li G, Simon M, Shi Z, Cancel L, Tarbell JM, Morrison B, Fu BM (2010a) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery. Ann Biomed Eng 38(8):2499PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li G, Yuan W, Fu BM (2010b) A model for water and solute transport across the blood-brain barrier. J Biomech 43(11):2133PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235PubMedCrossRefPubMedCentralGoogle Scholar
  92. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 29(10):1509PubMedCrossRefPubMedCentralGoogle Scholar
  93. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9–10):635PubMedCrossRefPubMedCentralGoogle Scholar
  94. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341.  https://doi.org/10.1038/nature14432 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mak M, Fung L, Strasser JF, Saltzman WM (1995) Distribution of drugs following controlled delivery to the brain interstitium. J Neuro-Oncol 26(2):91CrossRefGoogle Scholar
  96. Malina KC, Cooper I, Teichberg VI (2009) Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res 1284:12CrossRefGoogle Scholar
  97. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367PubMedCrossRefPubMedCentralGoogle Scholar
  98. Meyer J, Mischeck U, Veyhl M, Henzel K, Galla HJ (1990) Blood-brain barrier characteristic enzymatic properties in cultured brain capillary endothelial cells. Brain Res 514(2):305PubMedCrossRefPubMedCentralGoogle Scholar
  99. Miller G (2002) Drug targeting. Breaking down barriers. Science 297(5584):1116PubMedCrossRefPubMedCentralGoogle Scholar
  100. Miosge N (2001) The ultrastructural composition of basement membranes in vivo. Histol Histopathol 16(4):1239PubMedPubMedCentralGoogle Scholar
  101. Montagne A, Zhao Z, Zlokovic BV (2017) Alzheimer's disease: a matter of blood-brain barrier dysfunction? J Exp Med 214(11):3151–3169PubMedCrossRefPubMedCentralGoogle Scholar
  102. Moody DM (2006) The blood-brain barrier and blood-cerebral spinal fluid barrier. Semin Cardiothorac Vasc Anesth 10(2):128PubMedCrossRefPubMedCentralGoogle Scholar
  103. Moore TM, Chetham PM, Kelly JJ, Stevens T (1998) Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am J Phys 275(2 Pt 1):L203–L222Google Scholar
  104. Nag S, Begley DJ (2005) Blood-brain barrier, exchange of metabolites and gases. In: Pathology and genetics. Cerebrovascular diseases. ISN Neuropath. Press, BaselGoogle Scholar
  105. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54(1):131PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nhan T, Burgess A, Cho EE, Stefanovic B, Lilge L, Hynynen K (2013) Drug delivery to the brain by focused ultrasound induced blood–brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 172(1):274–280PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58:281PubMedCrossRefPubMedCentralGoogle Scholar
  108. Ohlin KE, Francardo V, Lindgren HS, Sillivan SE, O'Sullivan SS, Luksik AS, Vassoler FM, Lees AJ, Konradi C, Cenci MA (2011) Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain 134(Pt 8):2339–2357PubMedCrossRefPubMedCentralGoogle Scholar
  109. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409PubMedCrossRefPubMedCentralGoogle Scholar
  110. Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M (2003) Evaluation of the immortalised mouse brain capillary endothelial cell line, bEnd3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 990(1–2):95PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70:1781PubMedCrossRefPubMedCentralGoogle Scholar
  112. Pardridge WM (2005) Molecular biology of the blood-brain barrier. Mol Biotechnol 30(1):57PubMedCrossRefPubMedCentralGoogle Scholar
  113. Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733PubMedCrossRefPubMedCentralGoogle Scholar
  114. Pardridge WM (2017) Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs 31(6):503–519PubMedCrossRefPubMedCentralGoogle Scholar
  115. Park J, Fan Z, Kumon RE, El-Sayed ME, Deng CX (2010) Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med Biol 36(7):1176–1187PubMedCrossRefPubMedCentralGoogle Scholar
  116. Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 107(5):1358PubMedCrossRefPubMedCentralGoogle Scholar
  117. Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695PubMedCrossRefPubMedCentralGoogle Scholar
  118. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34(1):207PubMedCrossRefPubMedCentralGoogle Scholar
  119. Romero IA, Radewicz K, Jubin E, Michel CC, Greenwood J, Couraud PO, Adamson P (2003) Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci Lett 344(2):112PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rousselle C, Clair P, Smirnova M, Kolesnikov Y, Pasternak GW, Gac-Breton S, Rees AR, Scherrmann JM, Temsamani J (2003) Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J Pharmacol Exp Ther 306(1): 371PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F (1991) A cell-culture model of the blood-brain-barrier. J Cell Biol 115(6):1725–1735PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sahagun G, Moore SA, Hart MN (1990) Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am J Phys 259(1 Pt 2):H162Google Scholar
  123. Salvetti F, Cecchetti P, Janigro D, Lucacchini A, Benzi L, Martini C (2002) Insulin permeability across an in vitro dynamic model of endothelium. Pharm Res 19(4):445PubMedCrossRefPubMedCentralGoogle Scholar
  124. Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L (2006) Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 1109:1PubMedCrossRefPubMedCentralGoogle Scholar
  125. Sawada GA, Williams LR, Lutzke BS, Raub TJ (1999) Novel, highly lipophilic antioxidants readily diffuse across the blood-brain barrier and access intracellular sites. J Pharmacol Exp Ther 288(3):1327PubMedPubMedCentralGoogle Scholar
  126. Sawchuk RJ, Elmquist WF (2000) Microdialysis in the study of drug transporters in the CNS. Adv Drug Deliv Rev 45:295PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sayner SL (2011) Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 300(5):L667–L678PubMedCrossRefPubMedCentralGoogle Scholar
  128. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 93:4001PubMedCrossRefPubMedCentralGoogle Scholar
  129. Schulze C, Firth JA (1992) Interendothelial junctions during blood-brain-barrier development in the rat - morphological-changes at the level of individual tight junctional contacts. Dev Brain Res 69(1):85CrossRefGoogle Scholar
  130. Setiadi A, Korim WS, Elsaafien K, Yao ST (2017) The role of the blood-brain barrier in hypertension. Exp Physiol 103(3):337–342PubMedCrossRefPubMedCentralGoogle Scholar
  131. Shashoua VE, Hesse GW (1996) N-docosahexaenoyl, 3 hydroxytyramine: a dopaminergic compound that penetrates the blood-brain barrier and suppresses appetite. Life Sci 58(16):1347PubMedCrossRefPubMedCentralGoogle Scholar
  132. Shi L, Zeng M, Sun Y, Fu BM (2014a) Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136(3):031005PubMedCrossRefGoogle Scholar
  133. Shi L, Zeng M, Fu BM (2014b) Temporal effects of vascular endothelial growth factor and 3,5-cyclic monophosphate on blood-brain barrier solute permeability in vivo. J Neurosci Res 92(12):1678–1689PubMedCrossRefPubMedCentralGoogle Scholar
  134. Shi L, Palacio-Mancheno P, Badami J, Shin DW, Zeng M, Cardoso L, Tu R, Fu BM (2014c) Quantification of transient increase of the blood-brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles. Int J Nanomedicine 18(9):4437–4448Google Scholar
  135. Shimizu S (2008) A novel approach to the diagnosis and management of meralgia paresthetica. Neurosurgery 63(4):E820PubMedCrossRefPubMedCentralGoogle Scholar
  136. DW Shin, N Khadka, J Fan, M Bikson, BM Fu (2016) Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo SPIE Medical Imaging Conference, Feb. 27-March 3, 2016, San Diego, CA, USAGoogle Scholar
  137. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23(27):9254PubMedCrossRefPubMedCentralGoogle Scholar
  138. Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130:1016CrossRefGoogle Scholar
  139. Soga N, Connolly JO, Chellaiah M, Kawamura J, Hruska KA (2001) Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun Adhes 8(1):1PubMedCrossRefPubMedCentralGoogle Scholar
  140. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel CC (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136(3):239PubMedCrossRefGoogle Scholar
  141. Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ (2010 Jan 15) CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. J Immunol 184(2):1031–1040PubMedCrossRefPubMedCentralGoogle Scholar
  142. Thompson SE, Cavitt J, Audus KL (1994) Leucine-enkephalin effects on paracellular and transcellular permeation pathways across brain microvessel endothelial-cell monolayers. J Cardiovasc Pharmacol 24(5):818PubMedCrossRefPubMedCentralGoogle Scholar
  143. Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X (2017) Drug delivery to the brain across the blood-brain barrier using nanomaterials. SmallGoogle Scholar
  144. Tyagi N, Moshal KS, Sen U, Vacek TP, Kumar M, Hughes WM Jr, Kundu S, Tyagi SC (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11(1):25PubMedCrossRefPubMedCentralGoogle Scholar
  145. Ueno M, Sakamoto H, Liao YJ, Onodera M, Huang CL, Miyanaka H, Nakagawa T (2004) Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol 122(2):131PubMedCrossRefPubMedCentralGoogle Scholar
  146. de Vries HE, BlomRoosemalen MCM, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64(1):37PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wang R, Ashwal S, Tone B, Tian HR, Badaut J, Rasmussen A, Obenaus A (2007) Albumin reduces blood-brain barrier permeability but does not alter infarct size in a rat model of neonatal stroke. Pediatr Res 62:261PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107(Pt 5):1347–1357PubMedPubMedCentralGoogle Scholar
  149. Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H (2009) Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol 18(2):219CrossRefGoogle Scholar
  150. Yang FY, Lin YS, Kang KH, Chao TK (2011) Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J Control Release 150(1):111–116PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yoder EJ (2002) Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line. Glia 38(2):137PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yoon JH, Lee ES, Jeong Y (2017) In vivo imaging of the cerebral endothelial glycocalyx in mice. J Vasc Res 54(2):59–67.  https://doi.org/10.1159/000457799 Epub 2017 Apr 1CrossRefPubMedPubMedCentralGoogle Scholar
  153. Yuan W, Lv Y, Zeng M, Fu BM (2009) Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res 77:166PubMedCrossRefPubMedCentralGoogle Scholar
  154. Yuan W, Li G, Fu BM (2010a) Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann Biomed Eng 38(4):1463PubMedCrossRefPubMedCentralGoogle Scholar
  155. Yuan W, Li G, Zeng M, Fu BM (2010b) Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid. Microvasc Res 80(1):148–157PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zhang Y, Pardridge WM (2001) Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 76:1597PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zhang Y, Li CS, Ye YY, Johnson K, Poe J, Johnson S, Bobrowski W, Garrido R, Madhu C (2006) Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos 34(11):1935 PubMedCrossRefPubMedCentralGoogle Scholar
  158. Zhang Q, Fu BM, Zhang ZJ (2017) Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv 24(1):1037–1044PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic DM (1986) Measurement of solute transport across the blood-brain barrier in the perfused Guinea pig brain: method and application to N-methyl-alpha-aminoisobutyric acid. J Neurochem 46:1444PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations