The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction

  • Ye ZengEmail author
  • X. Frank Zhang
  • Bingmei M. Fu
  • John M. Tarbell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1097)


The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.



We would like to acknowledge the support from the National Natural Science Foundation of China [Grant no. 11402153(YZ)], National Institutes of Health [grant nos. SC1CA153325 (BF), RO1HL094889 (JT, BF), and RO1CA204949 (JT)].


  1. Achen MG, Stacker SA (1998) The vascular endothelial growth factor family; proteins which guide the development of the vasculature. Int J Exp Pathol 79(5):255–265CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adyshev DM, Moldobaeva NK, Elangovan VR, Garcia JG, Dudek SM (2011) Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 23(12):2086–2096CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alexopoulou AN, Multhaupt HA, Couchman JR (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 39(3):505–528CrossRefPubMedGoogle Scholar
  5. Andersen NF, Kristensen IB, Preiss BS, Christensen JH, Abildgaard N (2015) Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Eur J Haematol 95(3):211–217CrossRefPubMedGoogle Scholar
  6. Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y (1995) Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci 748:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101(5):1046–1056CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J, Bates DO, Knupp C, Squire JM (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19(4):343–351CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baeyens N, Mulligan-Kehoe MJ, Corti F, Simon DD, Ross TD, Rhodes JM, Wang TZ, Mejean CO, Simons M, Humphrey J, Schwartz MA (2014) Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci U S A 111(48):17308–17313CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bai K, Wang W (2012) Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 9(74):2290–2298CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baldwin AL, Winlove CP (1984) Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium. The journal of histochemistry and cytochemistry: official journal of the. Hist Soc 32(3):259–266Google Scholar
  12. Bartosch AMW, Mathews R, Tarbell JM (2017) Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophys J 113(1):101–108CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bashkin P, Neufeld G, Gitay-Goren H, Vlodavsky I (1992) Release of cell surface-associated basic fibroblast growth factor by glycosylphosphatidylinositol-specific phospholipase C. J Cell Physiol 151(1):126–137CrossRefPubMedGoogle Scholar
  14. Bernatchez PN, Soker S, Sirois MG (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274(43):31047–31054CrossRefPubMedGoogle Scholar
  15. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777CrossRefPubMedGoogle Scholar
  16. Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 595(15):5015–5035CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brands J, Van Teeffelen JWGE, Van den Berg BM, Vink H (2007) Role for glycocalyx perturbation in atherosclerosis development and associated microvascular dysfunction. Futur Lipidol 2(5):527–534CrossRefGoogle Scholar
  18. Cai B, Fan J, Zeng M, Zhang L, Fu BM (2012) Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J Appl Physiol (1985) 113(7):1141–1153CrossRefGoogle Scholar
  19. Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, Di Lorenzo A (2017) S1PR1 (Sphingosine-1-Phosphate Receptor 1) signaling regulates blood flow and pressure. Hypertension 70(2):426–434CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carey DJ, Bendt KM, Stahl RC (1996) The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J Biol Chem 271(25):15253–15260CrossRefPubMedGoogle Scholar
  21. Chakravarti R, Sapountzi V, Adams JC (2005) Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell 16(8):3678–3691CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chappell JC, Cluceru JG, Nesmith JE, Mouillesseaux KP, Bradley VB, Hartland CM, Hashambhoy-Ramsay YL, Walpole J, Peirce SM, Mac Gabhann F, Bautch VL (2016) Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. Cardiovasc Res 111(1):84–93CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–H1224CrossRefGoogle Scholar
  24. Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030CrossRefPubMedPubMedCentralGoogle Scholar
  25. Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114CrossRefPubMedGoogle Scholar
  26. Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40(4):828–839CrossRefGoogle Scholar
  27. Curry FR, Adamson RH (2013) Tonic regulation of vascular permeability. Acta Physiol (Oxf) 207(4):628–649CrossRefGoogle Scholar
  28. Dabagh M, Jalali P, Butler PJ, Randles A, Tarbell JM (2017) Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. J R Soc Interface 14(130):pii: 20170185CrossRefGoogle Scholar
  29. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26CrossRefPubMedPubMedCentralGoogle Scholar
  30. Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73(4):1121–1129CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Haan L, Hirst TR (2004) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (review). Mol Membr Biol 21(2):77–92CrossRefGoogle Scholar
  32. De Rossi G, Whiteford JR (2013) A novel role for syndecan-3 in angiogenesis. F1000 Res 2:270Google Scholar
  33. De Rossi G, Evans AR, Kay E, Woodfin A, McKay TR, Nourshargh S, Whiteford JR (2014) Shed syndecan-2 inhibits angiogenesis. J Cell Sci 127(Pt 21):4788–4799CrossRefPubMedPubMedCentralGoogle Scholar
  34. Deepa SS, Yamada S, Zako M, Goldberger O, Sugahara K (2004) Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J Biol Chem 279(36):37368–37376CrossRefGoogle Scholar
  35. van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92(6):592–594CrossRefGoogle Scholar
  36. van den Berg BM, Spaan JA, Vink H (2009) Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457(6):1199–1206CrossRefGoogle Scholar
  37. Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 279(23):24692–24700CrossRefGoogle Scholar
  38. Dyer DP, Salanga CL, Volkman BF, Kawamura T, Handel TM (2016) The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 26(3):312–326Google Scholar
  39. Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31(8):1908–1915CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM (2014) Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol 6(3):338–347CrossRefGoogle Scholar
  41. Egorova AD, van der Heiden K, Poelmann RE, Hierck BP (2012) Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation 83(2):S56–S61CrossRefGoogle Scholar
  42. Eshtehardi P, Brown AJ, Bhargava A, Costopoulos C, Hung OY, Corban MT, Hosseini H, Gogas BD, Giddens DP, Samady H (2017) High wall shear stress and high-risk plaque: an emerging concept. Int J Cardiovasc Imaging 33(7):1089–1099CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fels J, Jeggle P, Liashkovich I, Peters W, Oberleithner H (2014) Nanomechanics of vascular endothelium. Cell Tissue Res 355(3):727–737CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118(Pt 18):4103–4111CrossRefGoogle Scholar
  45. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10):e136–e142CrossRefPubMedPubMedCentralGoogle Scholar
  46. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286CrossRefGoogle Scholar
  47. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70CrossRefGoogle Scholar
  48. Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5(3):381–390CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fung YC (1997) Biomechanics: circulation. Springer, New York, p 571CrossRefGoogle Scholar
  50. Gautam M, Shen Y, Thirkill TL, Douglas GC, Barakat AI (2006) Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications. J Biol Chem 281(48):36492–36500CrossRefPubMedGoogle Scholar
  51. Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274(16):10816–10822CrossRefPubMedGoogle Scholar
  52. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267(9):6093–6098Google Scholar
  53. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ, Neufeld G (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271(10):5519–5523CrossRefGoogle Scholar
  54. Gojova A, Barakat AI (2005) Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98(6):2355–2362CrossRefGoogle Scholar
  55. Gotlieb AI (1990) The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol Pathol 18(4 Pt 1):603–617Google Scholar
  56. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290(1):H458–H452CrossRefGoogle Scholar
  57. Haddad O, Guyot E, Marinval N, Chevalier F, Maillard L, Gadi L, Laguillier-Morizot C, Oudar O, Sutton A, Charnaux N, Hlawaty H (2015) Heparanase and Syndecan-4 are involved in low molecular weight Fucoidan-induced angiogenesis. Mar Drugs 13(11):6588–6608CrossRefPubMedPubMedCentralGoogle Scholar
  58. Haeren RH, van de Ven SE, van Zandvoort MA, Vink H, van Overbeeke JJ, Hoogland G, Rijkers K (2016) Assessment and imaging of the cerebrovascular Glycocalyx. Curr Neurovasc Res 13(3):249–260CrossRefPubMedPubMedCentralGoogle Scholar
  59. Haidekker MA, L'Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278(4):H1401–H1406CrossRefGoogle Scholar
  60. Han Y, Weinbaum S, Spaan JAE, Vink H (2016) Large deformation analysis of the elastic recoil of fiber layers in a brinkman medium with application to the endothelial glycocalyx. J Fluid Mech 554:217–235CrossRefGoogle Scholar
  61. Huxley VH, Williams DA (2000) Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol 278(4):H1177–H1185CrossRefPubMedGoogle Scholar
  62. Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35(8):564–577CrossRefPubMedGoogle Scholar
  63. Jing Z, Wei-Jie Y, Yi-Feng ZG, Jing H (2016) Downregulation of Syndecan-1 induce glomerular endothelial cell dysfunction through modulating internalization of VEGFR-2. Cell Signal 28(8):826–837CrossRefPubMedGoogle Scholar
  64. Joseph-Silverstein J, Rifkin DB (1987) Endothelial cell growth factors and the vessel wall. Semin Thromb Hemost 13(4):504–513CrossRefPubMedGoogle Scholar
  65. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, Rapraeger AC (2016) Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogene 5:e202CrossRefGoogle Scholar
  67. Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamama K, Kuwabara A, Kanda T, Kobayashi I, Ohta H, Ui M, Okajima F (2000) Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 348(Pt 1):71–76CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kindt TJ, Osborne BA, Goldsby RA (2007) Kuby immunology, 6th edn. W. H. Freeman & Company, New YorkGoogle Scholar
  69. Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Phys 237(4):H481–H490Google Scholar
  70. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279(28):29367–29373CrossRefPubMedGoogle Scholar
  71. Koo A, García-Cardeña G, Dewey CF Jr (2011) Flow regulated endothelial glycocalyx expression and its function as a protective barrier against leukocyte adhesion. In: Annual meeting of Biomedical Engineering Society. Connecticut, HarfordGoogle Scholar
  72. Koo A, Dewey CF Jr, Garcia-Cardena G (2013) Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 304(2):C137–C146CrossRefPubMedGoogle Scholar
  73. Kuchan MJ, Jo H, Frangos JA (1994) Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am J Phys 267(3 Pt 1):C753–C758CrossRefGoogle Scholar
  74. dela Paz NG, Melchior B, Shayo FY, Frangos JA (2014) Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Galphaq/11 subunits of heterotrimeric G proteins. J Biol Chem 289(11):7413–7424CrossRefGoogle Scholar
  75. Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-Ruiz M, Sessa WC, Alessi DR, Hla T (2001) Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 8(3):693–704CrossRefPubMedGoogle Scholar
  76. Li W, Wang W (2018) Structural alteration of the endothelial glycocalyx: contribution of the actin cytoskeleton. Biomech Model Mechanobiol 17(1): 147–158CrossRefPubMedPubMedCentralGoogle Scholar
  77. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971CrossRefPubMedGoogle Scholar
  78. Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315(17):2871–2878CrossRefPubMedGoogle Scholar
  79. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50CrossRefPubMedGoogle Scholar
  80. Lipowsky HH (2011) Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discov Today Dis Models 8(1):57–62CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lipowsky HH (2012) The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann Biomed Eng 40(4):840–848CrossRefPubMedGoogle Scholar
  82. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126(1):111–126CrossRefPubMedGoogle Scholar
  83. Liu JX, Yan ZP, Zhang YY, Wu J, Liu XH, Zeng Y (2016) Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell Mol Biol (Noisy-le-Grand) 62(8):28–34Google Scholar
  84. Long DS, Smith ML, Pries AR, Ley K, Damiano ER (2004) Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc Natl Acad Sci U S A 101(27):10060–10065CrossRefPubMedPubMedCentralGoogle Scholar
  85. Long M, Huang SH, Wu CH, Shackleford GM, Jong A (2012) Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells. J Biomed Sci 19:19CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lopes CC, Dietrich CP, Nader HB (2006) Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Braz J Med Biol Res 39(2):157–167CrossRefPubMedGoogle Scholar
  87. Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25(6):1773–1783Google Scholar
  88. Malek AM, Izumo S (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109(Pt 4):713–726PubMedPubMedCentralGoogle Scholar
  89. Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125(Pt 13):3061–3073CrossRefPubMedPubMedCentralGoogle Scholar
  90. Marsh G, Waugh RE (2013) Quantifying the mechanical properties of the endothelial glycocalyx with atomic force microscopy. J Vis Exp 72:e50163Google Scholar
  91. Matsui TS, Kaunas R, Kanzaki M, Sato M, Deguchi S (2011) Non-muscle myosin II induces disassembly of actin stress fibres independently of myosin light chain dephosphorylation. Interface focus 1(5):754–766CrossRefPubMedPubMedCentralGoogle Scholar
  92. McAlpine CS, Swirski FK (2016) Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res 119(1):131–141CrossRefPubMedPubMedCentralGoogle Scholar
  93. McGuire PG, Castellot JJ Jr, Orkin RW (1987) Size-dependent hyaluronate degradation by cultured cells. J Cell Physiol 133(2):267–276CrossRefPubMedGoogle Scholar
  94. Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44(2):87–98CrossRefPubMedGoogle Scholar
  95. Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768(4):923–940CrossRefPubMedGoogle Scholar
  96. Michel CC, Phillips ME, Turner MR (1985) The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol 360:333–346CrossRefPubMedPubMedCentralGoogle Scholar
  97. Moon JJ, Matsumoto M, Patel S, Lee L, Guan JL, Li S (2005) Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J Cell Physiol 203(1):166–176CrossRefPubMedGoogle Scholar
  98. Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr DA, Barakat AI (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 22(22):4324–4334CrossRefPubMedPubMedCentralGoogle Scholar
  99. Muller S, Labrador V, Da Isla N, Dumas D, Sun R, Wang X, Wei L, Fawzi-Grancher S, Yang W, Traore M, Boura C, Bensoussan D, Eljaafari A, Stoltz JF (2004) From hemorheology to vascular mechanobiology: an overview. Clin Hemorheol Microcirc 30(3–4):185–200PubMedGoogle Scholar
  100. Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18(15):1801–1811CrossRefPubMedGoogle Scholar
  101. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1):9–22CrossRefPubMedGoogle Scholar
  102. Nichols B (2003) Caveosomes and endocytosis of lipid rafts. J Cell Sci 116(Pt 23):4707–4714CrossRefPubMedGoogle Scholar
  103. Nijenhuis N, Mizuno D, Spaan JA, Schmidt CF (2009) Viscoelastic response of a model endothelial glycocalyx. Phys Biol 6(2):025014CrossRefPubMedGoogle Scholar
  104. Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462(4):519–528CrossRefPubMedPubMedCentralGoogle Scholar
  105. O'Callaghan R, Job KM, Dull RO, Hlady V (2011) Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol 301(3):L353–L360CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ohlson M, Sorensson J, Haraldsson B (2001) A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280(3):F396–F405CrossRefPubMedGoogle Scholar
  107. Ono K, Hattori H, Takeshita S, Kurita A, Ishihara M (1999) Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology 9(7):705–711CrossRefPubMedGoogle Scholar
  108. Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355(1):228–233CrossRefPubMedPubMedCentralGoogle Scholar
  109. Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42(2):155–166CrossRefPubMedGoogle Scholar
  110. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14(2):98–112CrossRefPubMedGoogle Scholar
  111. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887CrossRefPubMedGoogle Scholar
  112. Poti F, Gualtieri F, Sacchi S, Weissen-Plenz G, Varga G, Brodde M, Weber C, Simoni M, Nofer JR (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R−/− mice. Arterioscler Thromb Vasc Biol 33(7):1505–1512CrossRefPubMedGoogle Scholar
  113. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440(5):653–666CrossRefPubMedPubMedCentralGoogle Scholar
  114. Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A (2003) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 signaling in brain endothelial cells. Specific role for glypican-1 in glioma angiogenesis. J Biol Chem 278(18):16045–16053CrossRefPubMedGoogle Scholar
  115. Rapraeger AC, Ell BJ, Roy M, Li X, Morrison OR, Thomas GM, Beauvais DM (2013) Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between alphaVbeta3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J 280(10):2194–2206CrossRefPubMedPubMedCentralGoogle Scholar
  116. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467CrossRefPubMedGoogle Scholar
  117. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454(3):345–359CrossRefPubMedPubMedCentralGoogle Scholar
  118. Reitsma S, oude Egbrink MG, Vink H, van den Berg BM, Passos VL, Engels W, Slaaf DW, van Zandvoort MA (2011) Endothelial glycocalyx structure in the intact carotid artery: a two-photon laser scanning microscopy study. J Vasc Res 48(4):297–306CrossRefPubMedGoogle Scholar
  119. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285(4):H1720–H1729CrossRefPubMedGoogle Scholar
  120. Rostgaard J, Qvortrup K (1997) Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53(1):1–13CrossRefGoogle Scholar
  121. Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM (2017) Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 312(3):H485–H500CrossRefPubMedGoogle Scholar
  122. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefPubMedPubMedCentralGoogle Scholar
  123. Saksela O, Rifkin DB (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110(3):767–775CrossRefPubMedGoogle Scholar
  124. Sanchez T (2016) Sphingosine-1-phosphate signaling in endothelial disorders. Curr Atheroscler Rep 18(6):31CrossRefPubMedGoogle Scholar
  125. Sanger JM, Sanger JW (1980) Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol 86(2):568–575CrossRefPubMedGoogle Scholar
  126. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):pii: a004952CrossRefGoogle Scholar
  127. Satcher R, Dewey CF Jr, Hartwig JH (1997) Mechanical remodeling of the endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation 4(4):439–453CrossRefPubMedGoogle Scholar
  128. Schnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P (1995a) Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269(5229):1435–1439CrossRefPubMedGoogle Scholar
  129. Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1995b) Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci U S A 92(5):1759–1763CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276(52):48619–48622CrossRefPubMedGoogle Scholar
  131. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556CrossRefPubMedPubMedCentralGoogle Scholar
  132. Secomb TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol 281(2):H629–H636CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sha T, Qi C, Fu W, Hao JI, Gong L, Wu H, Zhang Q (2016) Experimental study of USPIO-enhanced MRI in the detection of atherosclerotic plaque and the intervention of atorvastatin. Exp Ther Med 12(1):141–146CrossRefPubMedPubMedCentralGoogle Scholar
  134. Silver FH, Siperko LM (2003) Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit Rev Biomed Eng 31(4):255–331CrossRefPubMedGoogle Scholar
  135. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sims DE, Horne MM (1993) Non-aqueous fixative preserves macromolecules on the endothelial cell surface: an in situ study. Eur J Morphol 31(4):251–255PubMedPubMedCentralGoogle Scholar
  137. Smith ML, Long DS, Damiano ER, Ley K (2003) Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85(1):637–645CrossRefPubMedPubMedCentralGoogle Scholar
  138. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272(50):31582–31588CrossRefGoogle Scholar
  139. Song JW, Zullo J, Lipphardt M, Dragovich M, Zhang FX, Fu B, Goligorsky MS (2018) Endothelial glycocalyx-the battleground for complications of sepsis and kidney injury. Nephrol Dial Transplant 33(2):203–211CrossRefGoogle Scholar
  140. Sorci-Thomas MG, Thomas MJ (2016) Microdomains, inflammation, and atherosclerosis. Circ Res 118(4):679–691CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sorensson J, Ohlson M, Haraldsson B (2001) A quantitative analysis of the glomerular charge barrier in the rat. Am J Physiol Renal Physiol 280(4):F646–F656CrossRefGoogle Scholar
  142. Squire S (2001) A chance to grow. Prof Nurse 16(8 Suppl):S2PubMedPubMedCentralGoogle Scholar
  143. Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133(2):405–416CrossRefPubMedGoogle Scholar
  144. Stevens HY, Melchior B, Bell KS, Yun S, Yeh JC, Frangos JA (2008) PECAM-1 is a critical mediator of atherosclerosis. Dis Model Mech 1(2–3):175–181CrossRefPubMedPubMedCentralGoogle Scholar
  145. Stringer SE (2006) The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans 34(Pt 3):451–453CrossRefPubMedGoogle Scholar
  146. Surya VN, Michalaki E, Huang EY, Fuller GG, Dunn AR (2016) Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. J R Soc Interface 13(125):pii:20160823CrossRefGoogle Scholar
  147. Tabouillot T, Muddana HS, Butler PJ (2011) Endothelial cell membrane sensitivity to shear stress is lipid domain dependent. Cell Mol Bioeng 4(2):169–181CrossRefPubMedPubMedCentralGoogle Scholar
  148. Taleb S (2016) Inflammation in atherosclerosis. Arch Cardiovasc Dis 109(12):708–715CrossRefPubMedGoogle Scholar
  149. Tang GL, Weitz K (2015) Impaired arteriogenesis in syndecan-1(−/−) mice. J Surg Res 193(1):22–27CrossRefPubMedGoogle Scholar
  150. Tarbell JM, Cancel LM (2016) The glycocalyx and its significance in human medicine. J Intern Med 280(1):97–113CrossRefPubMedGoogle Scholar
  151. Tarbell JM, Ebong EE (2008) The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal 1(40):pt8CrossRefPubMedGoogle Scholar
  152. Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259(4):339–350CrossRefGoogle Scholar
  153. Teran M, Nugent MA (2015) Synergistic binding of vascular endothelial growth factor-a and its receptors to heparin selectively modulates complex affinity. J Biol Chem 290(26):16451–16462CrossRefPubMedPubMedCentralGoogle Scholar
  154. Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci U S A 101(47):16483–16488CrossRefPubMedPubMedCentralGoogle Scholar
  155. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13(1):238–250CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79(3):581–589CrossRefGoogle Scholar
  157. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995Google Scholar
  158. Wang Y, Shyy JY, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10:1–38CrossRefPubMedPubMedCentralGoogle Scholar
  159. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wang S, Iring A, Strilic B, Albarran Juarez J, Kaur H, Troidl K, Tonack S, Burbiel JC, Muller CE, Fleming I, Lundberg JO, Wettschureck N, Offermanns S (2015) P2Y(2) and Gq/G(1)(1) control blood pressure by mediating endothelial mechanotransduction. J Clin Invest 125(8):3077–3086CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G (2016) High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 3(4):257–267CrossRefPubMedPubMedCentralGoogle Scholar
  162. Weber AMT, Mathews R, Haq Z, Cancel LM, Tarbell JM (2017) The short term response of PECAM-1 to mechanical loading: Cyclooxygenase-2 and nitric oxide production with AFM pulling and shear stress. Biophys J 112(3):311a–311aCrossRefGoogle Scholar
  163. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100(13):7988–7995CrossRefPubMedPubMedCentralGoogle Scholar
  164. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167CrossRefGoogle Scholar
  165. Xu S, Ha CH, Wang W, Xu X, Yin M, Jin FQ, Mastrangelo M, Koroleva M, Fujiwara K, Jin ZG (2016) PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling. Cell Signal 28(3):117–124CrossRefGoogle Scholar
  166. Yamamoto K, Ando J (2011) New molecular mechanisms for cardiovascular disease: blood flow sensing mechanism in vascular endothelial cells. J Pharmacol Sci 116(4):323–331CrossRefGoogle Scholar
  167. Yan Z, Liu J, Xie L, Liu X, Zeng Y (2016) Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration. Peer J 4:e1669CrossRefGoogle Scholar
  168. Yao Y, Rabodzey A, Dewey CF Jr (2007) Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am J Physiol Heart Circ Physiol 293(2):H1023–H1030CrossRefGoogle Scholar
  169. Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM (2012) Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res 83(3):337–346CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yen W, Cai B, Yang J, Zhang L, Zeng M, Tarbell JM, Fu BM (2015) Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo. PLoS One 10(1):e0117133CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC (2006) Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 116(5):1284–1291CrossRefPubMedPubMedCentralGoogle Scholar
  172. Yurdagul A Jr, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473(10):1281–1295CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zeng Y (2017) Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. J Cell Mol Med 21(8):1457–1462CrossRefPubMedPubMedCentralGoogle Scholar
  174. Zeng Y, Liu J (2016) Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes. Exp Cell Res 348(2):184–189CrossRefGoogle Scholar
  175. Zeng Y, Tarbell JM (2014) The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One 9(1):e86249CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zeng Y, Ebong EE, Fu BM, Tarbell JM (2012) The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One 7(8):e43168CrossRefPubMedPubMedCentralGoogle Scholar
  177. Zeng Y, Waters M, Andrews A, Honarmandi P, Ebong E, Rizzo V, Tarbell JM (2013) Fluid shear stress induces the clustering of Heparan sulfate via mobility of Glypican-1 in lipid rafts. Am J Physiol Heart Circ Physiol 305(6):H811–H820CrossRefPubMedPubMedCentralGoogle Scholar
  178. Zeng Y, Adamson RH, Curry FR, Tarbell JM (2014) Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol 306(3):H363–H372CrossRefGoogle Scholar
  179. Zeng Y, Liu XH, Tarbell J, Fu B (2015) Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res 339(1):90–95CrossRefPubMedGoogle Scholar
  180. Zhou J, Li YS, Chien S (2014) Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34(10):2191–2198CrossRefPubMedPubMedCentralGoogle Scholar
  181. Zullo JA, Fan J, Azar TT, Yen W, Zeng M, Chen J, Ratliff BB, Song J, Tarbell JM, Goligorsky MS, Fu BM (2016) Exocytosis of endothelial lysosome-related organelles hair-triggers a patchy loss of Glycocalyx at the onset of Sepsis. Am J Pathol 186(2):248–258CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ye Zeng
    • 1
    Email author
  • X. Frank Zhang
    • 2
  • Bingmei M. Fu
    • 3
  • John M. Tarbell
    • 3
  1. 1.Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemUSA
  3. 3.Department of Biomedical EngineeringThe City College of the City University of New YorkNew YorkUSA

Personalised recommendations