Advertisement

Application of Enhanced Particle Swarm Optimization in Euclidean Steiner Tree Problem Solving in RN

  • Wilson Wolf Costa
  • Marcelo Lisboa Rocha
  • David Nadler Prata
  • Patrick Letouzé Moreira
Chapter

Abstract

Given a fixed set of points in a N-dimensional space (N ≥ 3) with Euclidean metrics, the Euclidean Steiner Tree Problem in RN consists of finding a minimum length tree that spans all these points using, if necessary, extra points (Steiner points). The finding of such solution is a NP-hard problem. This paper presents a modified metaheuristic based on Improved Particle Swarm Optimization to the problem considered. Finally, computational experiments compare the performance of the proposed heuristic, considering solution’s quality and computational time, in regard to previous works in the literature.

Notes

Acknowledgements

The authors acknowledge the reviewers for important and helpful contributions to this work. The development of this research benefited from the UFT Institutional Productivity Research Program (PROPESQ/UFT).

References

  1. 1.
    Alford, C., Brazil, M., Lee, D.H.: Optimisation in Underground Mining, pp. 561–577. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-71815-6_30
  2. 2.
    Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the Euclidean Steiner tree problem. Arch. Hist. Exact Sci. 68(3), 327–354 (2014). https://doi.org/10.1007/s00407-013-0127-z MathSciNetCrossRefGoogle Scholar
  3. 3.
    Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks. World Scientific Publishing, River Edge (2008)CrossRefGoogle Scholar
  4. 4.
    Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 1, pp. 84–88 (2000).  https://doi.org/10.1109/CEC.2000.870279
  5. 5.
    Fampa, M., Anstreicher, K.M.: An improved algorithm for computing Steiner minimal trees in Euclidean d-space. Discret. Optim. 5(2), 530–540 (2008). https://doi.org/10.1016/j.disopt.2007.08.006 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; a Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  7. 7.
    Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32 (1977). https://doi.org/10.1137/0132072 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).  https://doi.org/10.1109/ICNN.1995.488968 Google Scholar
  9. 9.
    Kuhn, H.W.: “Steiner’s” Problem Revisited, pp. 52–70. Mathematical Association of America, Washington (1974)Google Scholar
  10. 10.
    Montenegro, F., Torreão, J.R.A., Maculan, N.: Microcanonical optimization algorithm for the Euclidean Steiner problem in Rn with application to phylogenetic inference. Phys. Rev. E 68 (2003).  https://doi.org/10.1103/PhysRevE.68.056702
  11. 11.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)zbMATHGoogle Scholar
  12. 12.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb01515.x CrossRefGoogle Scholar
  13. 13.
    Rocha, M.L.: An hybrid metaheuristic approach to solve the Euclidean Steiner tree problem in Rn. In: Proceedings of XLV Brazilian Symposium on Operational Research, vol. 1, pp. 1881–1892 (2013)Google Scholar
  14. 14.
    Smith, W.D.: How to find Steiner minimal trees in Euclidean d-space. Algorithmica 7(1), 137–177 (1992). https://doi.org/10.1007/BF01758756 MathSciNetCrossRefGoogle Scholar
  15. 15.
    van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006). https://doi.org/10.1016/j.ins.2005.02.003 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zachariasen, M.: Local search for the Steiner tree problem in the Euclidean plane. Eur. J. Oper. Res. 119(2), 282–300 (1999). https://doi.org/10.1016/S0377-2217(99)00131-9 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wilson Wolf Costa
    • 1
  • Marcelo Lisboa Rocha
    • 1
  • David Nadler Prata
    • 1
  • Patrick Letouzé Moreira
    • 1
  1. 1.Postgraduate Program in Computational Modelling of SystemsFederal University of TocantinsPalmasBrazil

Personalised recommendations