Advertisement

POD-Based Multiobjective Optimal Control of Time-Variant Heat Phenomena

  • Stefan Banholzer
  • Eugen Makarov
  • Stefan VolkweinEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)

Abstract

In the present paper, a multiobjective optimal control problem governed by a heat equation with time-dependent convection term and bilateral control constraints is considered. For computing Pareto optimal points and approximating the Pareto front, the reference point method is applied. As this method transforms the multiobjective optimal control problem into a series of scalar optimization problems, the method of proper orthogonal decomposition (POD) is introduced as an approach for model-order reduction. New strategies for efficiently updating the POD basis in the optimization process are proposed and tested numerically.

Notes

Acknowledgements

S. Banholzer gratefully acknowledges support by the German DFG-Priority Program 1962 and by the Landesgraduiertenförderung of Baden-Württemberg.

References

  1. 1.
    S. Banholzer, POD-Based Bicriterial Optimal Control of Convection-Diffusion Equations, Master thesis, University of Konstanz, Department of Mathematics and Statistics, 2017, see http://nbn-resolving.de/ urn:nbn:de:bsz:352-0-421545
  2. 2.
    S. Banholzer, D. Beermann, S. Volkwein, POD-based error control for reduced-order bicriterial PDE-constrained optimization. Annu. Rev. Control 44, 226–237 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I (Springer, Berlin, 2000)Google Scholar
  4. 4.
    M. Ehrgott, Multicriteria Optimization (Springer, Berlin, 2005)zbMATHGoogle Scholar
  5. 5.
    G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization (Springer, Berlin, 2008)CrossRefGoogle Scholar
  6. 6.
    K.F. Fong, V.I. Hanby, T.-T. Chow, HVAC system optimization for energy management by evolutionary programming. Energy Build. 38, 220–231 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Gubisch, S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, ed. by P. Benner, A. Cohen, M. Ohlberger, K. Willcox (SIAM, Philadelphia, 2017), pp. 5–66Google Scholar
  8. 8.
    A. Kusiak, F. Tang, G. Xu, Multi-objective optimization of HVAC system with an evolutionary computation algorithm. Energy 36, 2440–2449 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Miettinen, Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science (Springer, Berlin, 1998)Google Scholar
  10. 10.
    S. Peitz, S. Oder-Blöbaum, M. Dellnitz, Multiobjective optimal control methods for fluid flow using reduced order modeling, in 24th Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, Canada, 21–26 August 2016, see http://arxiv.org/pdf/1510.05819v2.pdf
  11. 11.
    C. Romaus, J. Böcker, K. Witting, A. Seifried, O. Znamenshchykov, Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors, in IEEE Energy Conversion Congress and Exposition, San Jose, 2009, pp. 1640–1647Google Scholar
  12. 12.
    W. Stadler, Multicriteria Optimization in Engineering and in the Sciences (Plenum Press, New York, 1988)CrossRefGoogle Scholar
  13. 13.
    F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, 2nd edn. (American Mathematical Society, Providence, 2010)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefan Banholzer
    • 1
  • Eugen Makarov
    • 1
  • Stefan Volkwein
    • 1
    Email author
  1. 1.University of KonstanzDepartment of Mathematics and StatisticsKonstanzGermany

Personalised recommendations