Nitsche-Based Finite Element Method for Contact with Coulomb Friction

  • Franz Chouly
  • Patrick Hild
  • Vanessa LlerasEmail author
  • Yves Renard
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


The aim of this paper is to provide some mathematical results for the discrete problem associated to contact with Coulomb friction, in linear elasticity, when finite elements and Nitsche method are considered. We consider both static and dynamic situations. We establish existence and uniqueness results under appropriate assumptions on physical (friction coefficient) and numerical parameters. These results are complemented by a numerical assessment of convergence.


  1. 1.
    P. Ballard, S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem. M2AN Math. Model. Numer. Anal. 39, 59–77 (2005)Google Scholar
  2. 2.
    H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble), 18, 115–175 (1968), fasc. 1Google Scholar
  3. 3.
    A. Charles, P. Ballard, Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points. ESAIM Math. Model. Numer. Anal. 48, 1–25 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411, 329–339 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Chouly, P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51, 1295–1307 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Chouly, P. Hild, Y. Renard, A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM Math. Model. Numer. Anal. 49, 481–502 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Chouly, P. Hild, Y. Renard, A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM Math. Model. Numer. Anal. 49, 503–528 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Chouly, P. Hild, Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84, 1089–1112 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Chouly, R. Mlika, Y. Renard. An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139, 593–631 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Chouly, P. Hild, V. Lleras, Y. Renard, A Nitsche-based finite element method for contact with Coulomb friction (in preparation)Google Scholar
  11. 11.
    F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin, Y. Renard, An overview of recent results on Nitsche’s method for contact problems, in Proceedings of the UCL Workshop 2016 on Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering, vol. 121 (2017), pp. 93–141Google Scholar
  12. 12.
    D. Doyen, A. Ern, Analysis of the modified mass method for the dynamic Signorini problem with Coulomb friction. SIAM J. Numer. Anal. 49, 2039–2056 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Eck, J. Jarusek, Existence results for the static contact problem with coulomb friction. Math. Models Meth. Appl. Sci. 8, 445–468 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Hild, Y. Renard, Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics. Quart. Appl. Math. 63, 553–573 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Ligursky, Y. Renard, A well-posed semi-discretization of elastodynamic contact problems with friction. Quart. J. Mech. Appl. Math. 64, 215–238 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.A.C. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11, 407–428 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Mlika, Y. Renard, F. Chouly, An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325, 265–288 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Nitsche, Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. Renard, A uniqueness criterion for the Signorini problem with Coulomb friction. SIAM J. Math. Anal. 38, 452–467 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 256, 38–55 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Franz Chouly
    • 1
  • Patrick Hild
    • 2
  • Vanessa Lleras
    • 3
    Email author
  • Yves Renard
    • 4
  1. 1.Université de Franche ComtéBesançonFrance
  2. 2.Institut de Mathématiques de ToulouseUMR 5219, Université de Toulouse, CNRS, UPS-IMTToulouse Cedex 9France
  3. 3.IMAG, Univ Montpellier, CNRS, Place Eugène BataillonMontpellierFrance
  4. 4.INSA de LyonVilleurbanneFrance

Personalised recommendations