Heavy Metals Phytoremediation: First Mathematical Modelling Results

  • Aurea MartínezEmail author
  • Lino J. Alvarez-Vázquez
  • Carmen Rodríguez
  • Miguel E. Vázquez-Méndez
  • Miguel A. Vilar
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


This work deals with the numerical modelling of the different processes related to the phytoremediation methods for remedying heavy metal-contaminated environments. Phytoremediation is a cost-effective plant-based approach of remediation that takes advantage of the ability of plants to concentrate elements and compounds from the environment and to metabolize them in their tissues (toxic heavy metals and organic pollutants are the major targets of phytoremediation). Within the framework of water pollution, biosorption has received considerable attention in recent years because of its advantages: biosorption uses cheap but efficient materials as biosorbents, such as naturally abundant algae. In order to analyse this environmental problem, we propose a two-dimensional mathematical model combining shallow water hydrodynamics with the system of coupled equations modelling the concentrations of heavy metals, algae and nutrients in large waterbodies. Within this novel framework, we present a numerical algorithm for solving the system, and several preliminary computational examples for a simple realistic case.



This work was supported by funding from project MTM2015-65570-P of MINECO (Spain) and FEDER. The authors also thank the help and support provided by DHI with the MIKE21 modelling system.


  1. 1.
    L.J. Alvarez-Vázquez, A. Martínez, R. Muñoz-Sola, C. Rodríguez, M.E. Vázquez-Méndez, The water conveyance problem: optimal purification of polluted waters. Math. Models Methods Appl. Sci. 15, 1393–1416 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L.J. Alvarez-Vázquez, F.J. Fernández, R. Muñoz-Sola, Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349, 135–155 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L.J. Alvarez-Vázquez, F.J. Fernández, A. Martínez, Optimal management of a bioreactor for eutrophicated water treatment: a numerical approach. J. Sci. Comput. 43, 67–91 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Casas, C. Ryll, F. Troltzsch, Sparse optimal control of the Schlogl and FitzHugh-Nagumo systems. Comput. Methods Appl. Math. 13, 415–442 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Hecht, New development in Freefem++. J. Numer. Math. 20, 251–265 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Mani, C. Kumar, Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Martínez, L.J. Alvarez-Vázquez, C. Rodríguez, M.E. Vázquez-Méndez, M.A. Vilar, Optimal shape design of wastewater canals in a thermal power station, in Progress in Industrial Mathematics at ECMI 2012, ed. by M. Fontes, M. Gunther, N. Marheineke (Springer, New York, 2014), pp. 59–64CrossRefGoogle Scholar
  8. 8.
    MIKE 21, User guide and reference manual, Danish Hydraulic Institute (DHI), Horsholm, 2001Google Scholar
  9. 9.
    H. Perales-Vela, J. Peña-Castro, R. Cañizares-Villanueva, Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64, 1–10 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aurea Martínez
    • 1
    Email author
  • Lino J. Alvarez-Vázquez
    • 1
  • Carmen Rodríguez
    • 2
  • Miguel E. Vázquez-Méndez
    • 3
  • Miguel A. Vilar
    • 3
  1. 1.Universidade de VigoVigoSpain
  2. 2.Universidade de Santiago de CompostelaSantiagoSpain
  3. 3.Universidade de Santiago de CompostelaLugoSpain

Personalised recommendations