The Virtual Element Method on Anisotropic Polygonal Discretizations

  • Paola F. Antonietti
  • Stefano Berrone
  • Marco Verani
  • Steffen WeißerEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 126)


In recent years, the numerical treatment of boundary value problems with the help of polygonal and polyhedral discretization techniques has received a lot of attention within several disciplines. Due to the general element shapes an enormous flexibility is gained and can be exploited, for instance, in adaptive mesh refinement strategies. The Virtual Element Method (VEM) is one of the new promising approaches applicable on general meshes. Although polygonal element shapes may be highly adapted, the analysis relies on isotropic elements which must not be very stretched. But, such anisotropic element shapes have a high potential in the discretization of interior and boundary layers. Recent results on anisotropic polygonal meshes are reviewed and the Virtual Element Method is applied on layer adapted meshes containing isotropic and anisotropic polygonal elements.



P.F.A. has been partially funded by SIR starting grant n. RBSI14VT0S funded by the Italian Ministry of Education, Universities and Research (MIUR). P.F.A., S.B. and M.V. thank INdAM-GNCS.


  1. 1.
    P.F. Antonietti, L. Beirão da Veiga, C. Lovadina, M. Verani, Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51(1), 654–675 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    P.F. Antonietti, L. Mascotto, M. Verani, A multigrid algorithm for the p-version of the virtual element method. ESAIM Math. Model. Numer. Anal. 52(1), 337–364 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics (B.G. Teubner, Stuttgart, 1999)Google Scholar
  4. 4.
    L. Beirão da Veiga, A. Ern, Preface [Special issue-Polyhedral discretization for PDE]. ESAIM Math. Model. Numer. Anal. 50(3), 633–634 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Beirão da Veiga, G. Manzini, Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49(2), 577–599 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of virtual element methods. Math. Mod. Methods Appl. Sci. 23(1), 199–214 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Beirão da Veiga, F. Brezzi, D. Marini, A. Russo. Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialó, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Berrone, A. Borio, A residual a posteriori error estimate for the Virtual Element Method. Math. Mod. Methods Appl. Sci. 27(8), 1423–1458 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Berrone, A. Borio, Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elem. Anal. Des. 129, 14–31 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Cangiani, E.H. Georgoulis, T. Pryer, O.J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Copeland, U. Langer, D. Pusch, From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes, in Domain Decomposition Methods in Science and Engineering XVIII. Lecture Notes in Computational Science and Engineering, vol. 70 (Springer, Berlin, 2009), pp. 315–322Google Scholar
  13. 13.
    L. Formaggia, S. Perotto, New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Formaggia, S. Perotto, Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86(3), 471–490 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Mascotto, Ill-conditioning in the virtual element method: stabilizations and bases. Numer. Methods Partial Differ. Equ. 34(4), 1258–1281 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Weißer, Residual error estimate for BEM-based FEM on polygonal meshes. Numer. Math. 118(4), 765–788 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Weißer, Anisotropic polygonal and polyhedral discretizations in finite element analysis (2017). arXiv e-prints, arXiv:1710.10505Google Scholar
  19. 19.
    S. Weißer, Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM. Comput. Math. Appl. 73(2), 187–202 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Weißer, T. Wick, The dual-weighted residual estimator realized on polygonal meshes. Comput. Methods Appl. Math. (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paola F. Antonietti
    • 1
  • Stefano Berrone
    • 2
  • Marco Verani
    • 1
  • Steffen Weißer
    • 3
    Email author
  1. 1.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Scienze MatematichePolitecnico di TorinoTorinoItaly
  3. 3.Universität des SaarlandesFR MathematikSaarbrückenGermany

Personalised recommendations